Tim x , biet
(x^2+1).(x^2-4)=0
\(\dfrac{1}{4}-\left(2\cdot x\cdot\dfrac{1}{2}\right)^2=0\)
\(\left(2x\cdot\dfrac{1}{2}\right)^2=\dfrac{1}{4}-0\)
\(\left(2\cdot x\cdot\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)
`->`\(\left(2\cdot x\cdot\dfrac{1}{2}\right)^2=\left(\pm\dfrac{1}{2}\right)^2\)
`->`\(\left[{}\begin{matrix}2\cdot x\cdot\dfrac{1}{2}=\dfrac{1}{2}\\2\cdot x\cdot\dfrac{1}{2}=-\dfrac{1}{2}\end{matrix}\right.\)
`->`\(\left[{}\begin{matrix}2x=\dfrac{1}{2}\div\dfrac{1}{2}\\2x=-\dfrac{1}{2}\div\dfrac{1}{2}\end{matrix}\right.\)
`->`\(\left[{}\begin{matrix}2x=1\\2x=-1\end{matrix}\right.\)
`->`\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy, `x=1/2` hoặc `x=-1/2.`
Tim x biet : 20 . 2^x + 1 = 10.4^2 + 1
Tim x : ( 4-x:2)^3 - 1 = 2 . (2^3 - 5 : 2^0 )
20 . 2^x + 1 = 10.4^2 + 1
20 . 2^x + 1 = 10 . 16 + 1
20 . 2^x + 1 = 161
20 . 2^x = 161 - 1
20 . 2^x = 160
2^x = 8
2^x = 2^3
=> x = 3
( 4 - x : 2 )^3 - 1 = 2 . ( 2^3 - 5 : 2^0 )
( 4 - x : 2 )^3 - 1 = 2 . ( 8 - 5 : 1 )
( 4 - x : 2 )^3 - 1 = 2 . 3
( 4 - x : 2 )^3 - 1 = 6
( 4 - x : 2 )^3 = 7
=> ko tìm đc x
tim x biet : (X+1/2)x(X-3/4)=0
\(\left(x+\frac{1}{2}\right).\left(x-\frac{3}{4}\right)=0\)
TH1:
\(x+\frac{1}{2}=0\)
=> x = \(\frac{-1}{2}\)
TH2:
\(x-\frac{3}{4}=0\)
=> x = \(\frac{3}{4}\)
tim x thuoc z biet
(x-1)(x-3)=-5
(x+1)(x+4)=0
(x^2-4)(x^2-19)<0
a)=>x-1;x-3 \(\in\)Ư(-5)={-1;-5;1;5}
còn lại thử từng TH nhé
b)\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
c)=>x2-4;x2-19 trái dấu
Ta có:x^2-4-(x^2-19)=x^2-4-x^2+19=15 >0
\(\Rightarrow\orbr{\begin{cases}x^2-4>0\\x^2-19< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x^2>4\\x^2< 19\end{cases}}\)
Ta có:4<x^2<19
=>x^2\(\in\){9;16}
=>x\(\in\){3;4}
tim x thuoc Z biet :
(x-1)^2 =(x-3)^4
HELP ME:0!!
\(\left(x-1\right)^2=\left(x-3\right)^4\)
\(\Leftrightarrow\left(x-1\right)^2-\left(x-3\right)^4=0\)
\(\Leftrightarrow\left(x-1\right)^2-\left[\left(x-3\right)^2\right]^2=0\)
\(\Leftrightarrow\left[\left(x-1\right)-\left(x-3\right)^2\right]\left[\left(x-1\right)+\left(x-3\right)^2\right]=0\)
\(\Leftrightarrow\left(x-1-x^2+6x-9\right)\left(x-1+x^2-6x+9\right)=0\)
\(\Leftrightarrow\left(-x^2+7x-10\right)\left(x^2-5x+8\right)=0\)
\(\Leftrightarrow-\left(x-5\right)\left(x-2\right)\left(x^2-5x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
Vậy: ...
(x-1)^2 =(x-3)^4=\(\left\{{}\begin{matrix}1+1\\2+2\\3+3\\4+4\end{matrix}\right.=2+4+6+8=\sqrt[]{251234=\Sigma\dfrac{2}{2}22\dfrac{2}{2}}\max\limits_{212}=\dfrac{21}{23}2123=\sum\limits1^{ }_{ }\text{(x-1)^2 =x=}\sum1\)
Bổ sung cho @ Huỳnh Thanh Phong.
(- \(x^2\) + 7\(x\) - 10).(\(x^2\) - 5\(x\) + 8) = 0
(- \(x^2\) + 5\(x\) + 2\(x\) - 10).(\(x^2\) - \(\dfrac{5}{2}\)\(x\) - \(\dfrac{5}{2}\)\(x\) + \(\dfrac{25}{4}\) + \(\dfrac{7}{4}\)) = 0
[(- \(x^2\) + 5\(x\)) + (2\(x\) - 10)].[(\(x^2\) - \(\dfrac{5}{2}\)\(x\)) - (\(\dfrac{5}{2}\)\(x\) - \(\dfrac{25}{4}\)) + \(\dfrac{7}{4}\)] = 0
[ -\(x\)(\(x\) - 5) + 2.(\(x\) - 5)]. [\(x\)(\(x\) - \(\dfrac{5}{2}\)) - \(\dfrac{5}{2}\).(\(x\) - \(\dfrac{5}{2}\)) + \(\dfrac{7}{4}\)] = 0
(\(x\) - 5).(-\(x\) + 2).[(\(x-\dfrac{5}{2}\)).(\(x\) - \(\dfrac{5}{2}\)) + \(\dfrac{7}{4}\)] = 0
(\(x\) - 5).(-\(x\) + 2).[(\(x\) - \(\dfrac{5}{2}\))2 + \(\dfrac{7}{4}\)] = 0 (1)
Vì (\(x\) - \(\dfrac{5}{2}\))2 ≥ 0 ⇒ (\(x\) - \(\dfrac{5}{2}\))2 + \(\dfrac{7}{4}\) ≥ \(\dfrac{7}{4}\) (2)
Kết hợp (1) và (2) ta có:
\(\left[{}\begin{matrix}x-5=0\\-x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
Vậy \(x\in\) {2; 5}
tim x biet -3x/4.(1/x+2/7)=0
tim so nguyen x biet
c)(x - 2)(x + 1)<0
d)(x - 1)((x2 + 4) < 0
tim x, biet
x2-x+1/4=0
x^2-x+1/4=0
x^2-2x.1/2+(1/2)^2-(1/2)^2+1/4=0
(x-1/2)^2=0
x-1/2=0
x=1/2
tim x biet :
( 2-x ) x (4/5-x ) < 0
(x - 3/2) x ( 2x + 1 ) > 0