Chứng minh: x2 – 2xy + y2 + 1 > 0 với mọi số thực x và y.
CM rằng
a) x2+2xy+y2+1>0 với mọi x
b) x2+y2+1≥xy+x+y
c) x2-x+1>0 với mọi số thực x
em mong mọi người giúp đỡ em cảm ơn ạ
a) \(x^2+2xy+y^2+1\\ =\left(x+y\right)^2+1\\Do\left(x+y\right)^2>0\forall x\in R\\ \Rightarrow\left(x+y\right)^2+1>0\forall\in R\)
chứng minh:
a. x2- 4xy + y2+ 2 > 0 với mọi số thực x, y.
Bạn xem lại đề nhé: Ví dụ chọn x=2, y=1 ta có: 22-4.2.1+1+2=-1<0
chứng minh rằng : x^2 - 2xy + y^2 + 1 > 0 với mọi số thực của x và y
\(=\left(x-y\right)^2+1\ge1>0,\forall x,y\)
\(x^2-2xy+y^2+1\)
\(=\left(x-y\right)^2+1\)
Vì \(\left(x-y\right)^2\ge0\) với mọi \(x,y\in R\)
\(\Rightarrow\left(x-y\right)^2+1\ge1\) với mọi \(x,y\in R\)
\(\Rightarrow\left(x-y\right)^2+1>0\) với mọi \(x,y\in R\) (đpcm)
Chứng minh rằng
x^2-2xy+y^2+1>0 với mọi số thực x và y
x-x^2-1<0 với mọi số thực x
Ta có : x2 - 2xy + y2 + 1 = (x - y)2 + 1
Vì : \(\left(x-y\right)^2\ge0\forall x\in R\)
Nên : \(\left(x-y\right)^2+1\ge1\forall x\in R\)
Suy ra : \(\left(x-y\right)^2+1>0\forall x\in R\)
Vậy x2 - 2xy + y2 + 1 \(>0\forall x\in R\)
Ta có : x - x2 - 1
= -(x2 - x + 1)
\(=-\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\)
\(=-\left(x^2-x+\frac{1}{4}\right)-\frac{3}{4}\)
\(=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)
Vì : \(-\left(x-\frac{1}{2}\right)^2\le0\forall x\in R\)
Nên : \(-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}< 0\)
Vậy x - x2 - 1 \(< 0\forall x\in R\)
hỏi tí cái chữ A ngược đó là gì vậy bạn
x2-6xy+y2+1 > 0 với mọi số thực của x và y
-25x2+5x-1 < 0 với mọi số thực của x
\(-25x^2+5x-1=-\left(25x^2-5x+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(5x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}< 0\forall x\)
chứng minh rằng; đa thức sau không âm với mọi gtrị của x và y
X2+y2-2xy+x-y+1
Chứng minh rằng
x^2-2xy+y^2+1>0 với mọi số thực x và y
x-x^2-1<0 với mọi số thực x
giúp mình với ah
\(x^2-2xy+y^2+1\)
\(=\left(x^2-2xy+y^2\right)+1\)
\(=\left(x-y\right)^2+1\)
vì \(\left(x-y\right)^2\ge0\Rightarrow\left(x-y\right)^2+1>0\forall x,y\)
vậy ................
chứng minh
a, x^2-2xy+y^2+1>0 với mọi số thực x va y
b, x-x^2-1<0 với mọi số thực x
Chứng minh :
a) \(x^2-2xy+y^2+1>0\) với mọi số thực x và y
b) \(x-x^2-1< 0\) với mọi số thực x
a) x2 - 2xy + y2 + 1
= ( x - y)2 + 1
Do : ( x - y)2 lớn hơn hoặc bằng 0 với mọi số tực x và y
--> ( x -y)2 + 1 lớn hơn hoặc bằng 1 > 0 với mọi số thực x và y
Khi và chỉ khi : x - y =0 --> x =y
b) x - x2 - 1
= - ( x2 - x + 1)
= - [ x2 - 2.\(\dfrac{1}{2}\)x + (\(\dfrac{1}{2}\))2 - \(\dfrac{1}{4}+1\)]
= - ( x - \(\dfrac{1}{2}\))2 + \(\dfrac{1}{4}-1\)
= - ( x - \(\dfrac{1}{2}\))2 - \(\dfrac{3}{4}\)
Do : - ( x - \(\dfrac{1}{2}\))2 nhỏ hơn hoặc bằng 0 với mọi số thực x
--> - ( x - \(\dfrac{1}{2}\))2 - \(\dfrac{3}{4}\) nhỏ hơn hoặc bằng - \(\dfrac{3}{4}\)với mọi số thực x
Khi và chỉ khi : x - \(\dfrac{1}{2}\)=0 --> x = \(\dfrac{1}{2}\)