Những câu hỏi liên quan
PB
Xem chi tiết
CT
5 tháng 6 2017 lúc 5:38

Định lí Talet trong tam giác:

Nếu một đường thẳng song song với một cạnh của một tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh ấy những đoạn thẳng tương ứng tỉ lệ.

Câu hỏi ôn tập chương 3 phần hình học Toán 8 Tập 2 | Giải toán lớp 8

 

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 8 2019 lúc 17:37

Hệ quả của định lí Talet:

Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tương ứng với tỉ lệ ba cạnh của tam giác đã cho.

Câu hỏi ôn tập chương 3 phần hình học Toán 8 Tập 2 | Giải toán lớp 8

Bình luận (0)
H24
Xem chi tiết
NT
22 tháng 6 2023 lúc 18:03

 

Mở ảnh

Mở ảnh

Bình luận (0)
SK
Xem chi tiết
LV
22 tháng 4 2017 lúc 15:57

Định lí Talet đảo:

Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh ấy những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.

Bình luận (0)
NH
16 tháng 5 2019 lúc 9:46

gt: DE giao AB={ D}, DE giao ={ E}

\(\frac{AD}{AB}\)= \(\frac{AE}{AC}\)

kl: =) DE// BC

Bình luận (0)
KS
17 tháng 5 2019 lúc 4:50

Định lý Ta - lét đảo:

Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.

Vẽ hình và Giả thuyết, Kết luận:

Ôn tập: Tam giác đồng dạng

GT: △ABC,\(\frac{AM}{AB}=\frac{AN}{AC},\frac{MB}{AB}=\frac{NC}{AC},\frac{AM}{MB}=\frac{AN}{NC}\)

KL: MN // BC

Bình luận (0)
CE
Xem chi tiết
TG
28 tháng 2 2020 lúc 17:09

Câu 1:

*Định lí Ta - lét thuận: Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ lệ.

Kết quả hình ảnh cho Giả thiết, kết luận, vẽ hình định lí TA let

*Định lí Ta - lét đảo: Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.

Câu 2:

*Định lí Ta - lét đảo: Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.

Hệ quả của định lí Talet

Nếu một đường thẳng cắt hai cạnh còn lại của một của một tam giác và song song với các cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh còn lại của tam giác đã cho.


Bình luận (0)
 Khách vãng lai đã xóa
SK
Xem chi tiết
LV
22 tháng 4 2017 lúc 15:58

Định lí Talet trong tam giác:

Nếu một đường thẳng song song với một cạnh của một tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh ấy những đoạn thẳng tương ứng tỉ lệ.

Câu hỏi ôn tập chương 3 phần hình học Toán 8 Tập 2 | Giải toán lớp 8

Bình luận (0)
SK
Xem chi tiết
QD
22 tháng 4 2017 lúc 15:57

Định nghĩa: Hai đoạn thẳng AB và CD gọi là tỉ lệ với hai đoạn thẳng A'B' và C'D' nếu có tỉ lệ thức:

Câu hỏi ôn tập chương 3 phần hình học Toán 8 Tập 2 | Giải toán lớp 8

Bình luận (0)
LV
22 tháng 4 2017 lúc 15:57

Hệ quả của định lí Talet:

Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tương ứng với tỉ lệ ba cạnh của tam giác đã cho.

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 11 2018 lúc 12:45

Định lý:

Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề của hai đoạn ấy.

Câu hỏi ôn tập chương 3 phần hình học Toán 8 Tập 2 | Giải toán lớp 8

 

Bình luận (0)
NH
Xem chi tiết
NT
11 tháng 11 2023 lúc 21:33

Nếu Ox,Oy là hai tia phân giác của hai góc kề bù thì Ox\(\perp Oy\)

loading...

 

GT

\(\widehat{AOB};\widehat{AOC}\) là hai góc kề bù

OD,OE lần lượt là phân giác của \(\widehat{AOB};\widehat{AOC}\)

KLOD\(\perp\)OE

OD là phân giác của \(\widehat{AOB}\)

=>\(\widehat{AOB}=2\cdot\widehat{AOD}\)

OE là phân giác của \(\widehat{AOC}\)

=>\(\widehat{AOC}=2\cdot\widehat{AOE}\)

\(\widehat{AOB}+\widehat{AOC}=180^0\)(hai góc kề bù)

=>\(2\cdot\widehat{AOE}+2\cdot\widehat{AOD}=180^0\)

=>\(\widehat{AOE}+\widehat{AOD}=90^0\)

=>\(\widehat{EOD}=90^0\)

=>OE\(\perp\)OD(ĐPCM)

Bình luận (0)