Biết a = \(^{4^x}\) . \(3^y\)= \(6^4\) tìm x+y
Bài 1 : Tìm x ,y,z biết:
a, 3/x-1 = 4/y-2 = 5/z-3 và x+y+z = 18
b, 3/x-1 = 4/y-2 = 5/z-3 và x.y.z = 192
Bài 2 : Tìm x,y,z biết : x^3+y^3/6 = x^3-2y^3/4 và x^6.y^6 = 64
Bài 3 : Tìm x,y,z biết :x+4/6 = 3y-1/8 = 3y-x-5/x
Bài 4 :Tìm x,y,z biết : x+y+2005/z = y+z-2006 = z+x+1/y = 2/x+y+z
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
cũng dễ thôi
Bài 2: Cho đa thức A= -4\(x^5\)\(y^3\)+ 6\(x^4\)\(y^3\)- 3\(x^2\)\(y^3\)\(z^2\)+ 4\(x^5\)\(y^3\)- \(x^4y^3\)+ 3\(x^2y^3z^2\)- 2\(y^4\)+22
a) Thu gọn rồi tìm bậc của đa thức A
b) Tìm đa thức B, biết rằng: B-\(5y^4\)=A
`a)`
`A=-4x^5y^3+6x^4y^3-3x^2y^3z^2+4x^5y^3-x^4y^3+3x^2y^3z^2-2y^4+22`
`A=(-4x^5y^3+4x^5y^3)+(6x^4y^3-x^4y^3)-(3x^2y^3z^2-3x^2y^3z^2)-2y^4+22`
`A=5x^4y^3-2y^4+22`
`->` Bậc: `7`
`b)B-5y^4=A`
`=>B=A+5y^4`
`=>B=5x^4y^3-2y^4+22+5y^4`
`=>B=5x^4y^3+3y^4+22`
a)tìm x,y biết:x-1/y+2 và x+y=23
b)tìm x biết: 4^5+4^5+4^5+4^5/3^5+3^5+3^5.6^5+6^5+6^5+6^5+6^5+6^5/2^5+2^5=8^2x-6
Theo đề ra, ta có: \(\frac{x-1}{y+2}=\frac{3}{5}\)
\(\Rightarrow\frac{x-1}{3}=\frac{y+2}{5}=\frac{x-1+y+2}{8}=\frac{23-1+2}{8}=\frac{24}{8}=3\)
\(\frac{x-1}{3}=3\Rightarrow x=3.3+1=10\)
\(\frac{y+2}{5}=3\Rightarrow y=5.3-2=13\)
Bài 4*: Tìm x, y Z , biết :
a) x . y = 12
b) (x + 1).(y + 3) = 6
a: Ta có: xy=12
nên \(\left(x,y\right)\in\left\{\left(1;12\right);\left(-1;-12\right);\left(12;1\right);\left(-12;-1\right);\left(2;6\right);\left(-2;-6\right);\left(6;2\right);\left(-6;-2\right);\left(3;4\right);\left(4;3\right);\left(-3;-4\right);\left(-4;-3\right)\right\}\)
a,tìm số nguyên x,y biết :
x-1/-4=-4/x-1
x-4/6=-1/3
a) Ta có: \(\dfrac{x-1}{-4}=\dfrac{-4}{x-1}\)
\(\Leftrightarrow\left(x-1\right)^2=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
Vậy: \(x\in\left\{5;-3\right\}\)
b) Ta có: \(\dfrac{x-4}{6}=\dfrac{-1}{3}\)
\(\Leftrightarrow x-4=-2\)
hay x=2
Vậy: x=2
a/
\(x-\dfrac{1}{-4}=-\dfrac{4}{x-1}\)
\(x+\dfrac{1}{4}+\dfrac{4}{x-1}=0\)
\(\dfrac{x\left(x-1\right)4}{4\left(x-1\right)}+\dfrac{16}{4\left(x-1\right)}=0\)
\(4x\left(x-1\right)+16=0\)(quy tắc khử mẫu lớp 8)
\(4x^2-4x+16=0\)
\(4x^2-2x-2x+16=0\)
\(\left(4x^2-2x\right)-\left(2x-16\right)=0\)
\(2x\left(2x-1\right)-2\left(x-16\right)=0\)
1) tìm x;y thuộc z biết
a) x-7/y-6=7/6;x-y=-4
b)3+x/5+y=3/5và x-y=16
tìm x,y thuộc N, biết
a, x/3 - 4/y = 1/5
b,4/x +y/3=5/6
Tìm x và y biết
a, x/7 = y /6 và x-y = 80. b, x /4 = y /7 và x+ y =12
c, 2.x = 3.y và x+y = 10. d, 3.x = 5.y và x + y = 40
e, 4.x = 3.y và x - y = 11. f, x/4 = y /3 và x.y =12
a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{7}=\dfrac{y}{6}=\dfrac{x-y}{7-6}=\dfrac{80}{1}=80\)
\(\Rightarrow\dfrac{x}{7}=80\Rightarrow x=80\cdot7=560\)
\(\Rightarrow\dfrac{y}{6}=80\Rightarrow y=80\cdot6=480\)
b) Áp dụng tính chất dãy tỉ số bằng nhau ta có::
\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{x+y}{4+7}=\dfrac{12}{11}\)
\(\Rightarrow\dfrac{x}{4}=\dfrac{12}{11}\Rightarrow x=\dfrac{4\cdot12}{11}=\dfrac{48}{11}\)
\(\Rightarrow\dfrac{y}{7}=\dfrac{12}{11}\Rightarrow y=\dfrac{7\cdot12}{11}=\dfrac{84}{11}\)
Mình làm mẫu 2 câu thôi nhé
Tìm x,y,z biết:
a, x = y/6 = z/3
b, x/2 = y = z/3
c, x/6 = y/3 = z/3
d, x/2 = y/3 = z/4
e, x/2 = y/-2 = z/5
f, x/2 = y/-3 = z/4
x2=y3=z4x2=y3=z4
\Leftrightarrow2x4=y3=z4=2x+y−z4+3−4=123=42x4=y3=z4=2x+y−z4+3−4=123=4
\Rightarrowx=8
y=12
z=16
bài 2
x2=y5=z7x2=y5=z7
\Rightarrow2y=5x ;x=2,5y ;zx=3,5zx=3,5 ;2y=5x;z=3,5x
\RightarrowA = x-y+z/x+2y-z=x-2,5x+3,5+5x-3,5x=3,5
Tìm 3 số x,y,z biết rằng x/2 = y/4; y/8 = z/5 và x+y-z= 9
A. x=3, y=4, z=-2
B. x=6, y=8, z=5
C. x=-6, y=-8, z=-23
D. x=-6, y=8, z=5