Những câu hỏi liên quan
PB
Xem chi tiết
CT
11 tháng 2 2017 lúc 9:07

Phương trình của đường thẳng AB có dạng: y = ax + b.

Do phương trình đi qua A(4;5) và B(1; -1) nên ta có:

5 = a.4 + b (1)

-1 = a.1 + b (2)

Trừ từng vế của (1) và (2), ta có: 6 = 3a ⇒ a = 2.

Thay a = 2 và (1) để tìm b, ta có 5 = 2.4 + b ⇒ b = -3.

Vậy phương trình đường thẳng AB là: y = 2x – 3.

Làm tương tự như trên, ta có:

Phương trình đường thẳng BC là: y = -x.

Phương trình đường thẳng CD là: y = x – 8.

Phương trình đường thẳng DA là: y = -2x + 13.

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 4 2018 lúc 16:33

Hai đường chéo AC và BD vuông góc với nhau tại I.

- Đường thẳng AB có hệ số góc bằng 2, do đó ta có

tgα = 2 ⇒ α = 63 ° 26 ' (tính trên máy tính bỏ túi).

Suy ra ∠ (ABD) ≈ 63 ° 26 '

Tam giác ABD cân, nên cũng có  ∠ (ADB) ≈  63 ° 26 '

Từ đó suy ra  ∠ (BAD) =  180 °  - 2.  63 ° 26 '  ≈  53 ° 8 '

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 12 2018 lúc 13:43

Ta có

A B → = 1 ; 7 ⇒ A B = 1 2 + 7 2 = 5 2 B C → = − 7 ; 1 ⇒ B C = 5 2 C D → = − 1 ; − 7 ⇒ C D = 5 2 D A → = 7 ; − 1 ⇒ D A = 5 2 ⇒ A B = B C = C D = D A = 5 2 .

Lại có:  A B → . B C → = 1 − 7 + 7.1 = 0  nên A B ⊥ B C .

Từ đó suy ra ABCD là hình vuông.

Chọn C.

Bình luận (0)
LH
Xem chi tiết
BH
13 tháng 4 2016 lúc 10:19

Ta có:  = (1; 7);     = (1; 7)

 = => ABCD là hình bình hành  (1)

ta lại có : AB= 50    =>   AB = 5 √2

AD= 50    =>   AD = 5 √2

AB = AD, kết hợp với (1)  => ABCD là hình thoi (2)

Mặt khác  = (1; 7);  = (-7; 1)

1.7 + (-7).1 = 0 =>  ⊥ (3)
Kết hợp (2) và (3) suy ra ABCD là hình vuông

Bình luận (2)
TT
Xem chi tiết
NT
2 tháng 1 2022 lúc 8:24

\(\overrightarrow{AB}=\left(-3;7\right)\)

\(\overrightarrow{DC}=\left(1-x_D;5-y_D\right)\)

Để ABCD là hbh thì 

\(\left\{{}\begin{matrix}1-x_D=-3\\5-y_D=7\end{matrix}\right.\Leftrightarrow D\left(2;-2\right)\)

Bình luận (0)
PB
Xem chi tiết
CT
11 tháng 3 2017 lúc 3:38

Tam  giác ABC có M;  N ; P lần lượt là trung điểm của  BC; AC ; BC nên PM và MN  là đường trung bình của tam giác ABC.

Suy ra: PM// AC;  NM // AB.

Do đó, tứ giác ANMP là hình bình hành.

Bình luận (0)
BC
Xem chi tiết
AH
30 tháng 11 2018 lúc 14:14

Lời giải:

Tọa độ trung điểm $M$ của $AB$ là:

\(\left(\frac{x_A+x_B}{2}; \frac{y_A+y_B}{2}\right)=\left(\frac{2+0}{2}; \frac{5+(-7)}{2}\right)=(1;-1)\)

Bình luận (2)
PB
Xem chi tiết
CT
8 tháng 9 2018 lúc 9:30

Đáp án A

Ta có khoảng cách từ A đến trục Ox bằng 6 > R.

Đường tròn (A; R) cắt trục Ox tại 2 điểm phân biệt .

Khoảng cách từ A đến trục Oy bằng 5 = R..

Do đó, đường tròn (A; R) tiếp xúc với trục Oy.

Bình luận (0)
LP
Xem chi tiết