Những câu hỏi liên quan
KS
Xem chi tiết
PN
17 tháng 3 2016 lúc 22:07

A B C M I 1 2

Trên tia  \(AM\)  của tam giác \(ABC\) lấy điểm \(I\)  sao cho  \(AM=IM\)

Ta có:  \(AM=IM\)  (theo giả thiết)

      góc  \(M_1\)  \(=\)  góc  \(M_2\) (đối đỉnh)

          \(MC=MB\)  (do  \(M\)  là trung điểm của  \(BC\))

nên  \(\Delta AMC=\Delta IMB\)  \(\left(cgc\right)\)

suy ra  góc  \(MAC\)  \(=\)  góc  \(MIB\)  (hai góc tương ứng)

Do đó,  \(BI=AC>AB\)

Khi đó, xét  \(\Delta ABI\)  có   \(BI>AB\)  

nên  góc  \(BAI\)  \(>\)  góc  \(BIA\)

\(\Leftrightarrow\)  góc  \(BAM\)   \(>\)  góc  \(MAC\)

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 6 2019 lúc 12:56

c. Trong tam giác ADC có CD < AC ⇒ ∠(DAC) < ∠(ADC) (1 điểm)

Mà ∠(BAM) = ∠(ADC) ( 2 góc tương ứng vì ΔABM = ΔDCM) (0.5 điểm)

 

Suy ra ∠(MAB) > ∠(MAC) (0.5 điểm)

Bình luận (0)
NA
Xem chi tiết
OM
10 tháng 2 2017 lúc 13:52

ấn đúng 0

đáp án và lời giải sẽ hiện ra trước mắt

Kết quả hình ảnh cho online math

Bình luận (0)
SG
Xem chi tiết
ML
Xem chi tiết
NT
12 tháng 1 2024 lúc 8:18

loading...  loading...  loading...  

Bình luận (0)
SK
Xem chi tiết
JT
6 tháng 3 2018 lúc 21:32

* Xét ΔABM và ΔMCE: AM=ME

\(\widehat{AMB}=\widehat{CME}\)

BM=MC

⇒ ΔABM = ΔMCE (c.g.c)

⇒ CE=AB ( 2 cạnh tương ứng)

\(\widehat{BAM}=\widehat{CEM}\)( 2 góc tương ứng)

Vì AB<AC

⇒ CE<AC

Xét ΔACE có: CE< AC

\(\widehat{MAC}= \widehat{CEM}\)

\(\widehat{BAM}=\widehat{CEM}\) (cmtrn)

\(\widehat{BAM}=\widehat{MAC}\) (đpcm)

Bình luận (0)
JT
6 tháng 3 2018 lúc 21:40

M A B C E // // / /

Bình luận (0)
LV
12 tháng 1 2019 lúc 16:38

Vẽ đường thẳng D sao cho M là trưng điểm của AD.

Xét \(\Delta AMB\)\(\Delta DMC\) có:
AM= ME

\(\widehat{AMB}=\widehat{CME}\)

MB= MC

\(\Rightarrow\Delta AMB=\Delta DMC\) ( c.g.c)\(\Rightarrow AB=CD;\widehat{BAM}=\widehat{D}\)

Ta có: AC > AB, AB= CD

\(\Rightarrow\Delta ACD\) có AC = CD

\(\Rightarrow\widehat{D}=\widehat{MAC}\)

\(\Leftrightarrow\widehat{BAM}>\widehat{CAM}\) ( Đpcm)

Bình luận (0)
TN
Xem chi tiết
CH
Xem chi tiết
H24
Xem chi tiết
NT
28 tháng 2 2022 lúc 20:11

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AB}{4}=\dfrac{AC}{5}=\dfrac{BC}{6}=\dfrac{AB+AC+BC}{4+5+6}=\dfrac{30}{15}=2\)

Do đó: AB=8cm; AC=10cm; BC=12cm

=>\(\widehat{C}< \widehat{B}< \widehat{A}\)

b: \(\cos MAB=\dfrac{AB^2+AM^2-BM^2}{2\cdot AB\cdot AM}=\dfrac{AB^2+AM^2-CM^2}{2\cdot AB\cdot AM}\)

\(\cos MAC=\dfrac{AM^2+AC^2-MC^2}{2\cdot AM\cdot AC}\)

mà \(\dfrac{AB^2+AM^2-MC^2}{2\cdot AM\cdot AC}< \dfrac{AM^2+AC^2-MC^2}{2\cdot AM\cdot AC}\)

nên \(\widehat{MAB}>\widehat{MAC}\)

Bình luận (0)