Tìm GTLN của A=(2x+1)^2-(3x+2)^2+2x+11
1. Tìm GTNN
C = |x - 1/2| + (y + 2)^2 +11
2. Tìm GTLN
a) C = - |2 - 3x| + 1/2
b) D = - 3 - |2x + 4|
Tìm GTLN của B= ( 2x + 1 )2 - ( 3x - 2 )2 + x -11
Theo đề bài ta có :
\(B=\left(2x+1\right)^2-\left(3x-2\right)2+x-11\)
=> \(B=\left(4x^2+4x+1\right)-\left(6x-4\right)+x-11\)
=> \(B=4x^2-x-6\)
=> \(B=\left(2x-\frac{1}{4}\right)^2-\frac{97}{16}\)
=> \(Min_B=-\frac{97}{16}\Leftrightarrow x=\frac{1}{8}\)
Không tìm được Max
Sửa đề :
\(B=\left(2x+1\right)^2-\left(3x-2\right)^2+x-11\)
=> \(B=\left(4x^2+4x+1\right)-\left(9x^2-12x+4\right)+x-11\)
=> \(B=-5x^2+17x-14\)
=> \(B=-5\left(x-1,7\right)^2+\frac{9}{20}\)
=> \(Max_B=\frac{9}{20}\Leftrightarrow x=1,7\)
giúp mình với mọi người ơi:
A) Tìm GTLN của A= x-3x^2+1
B) Tìm GTLN của B= 2x^2-8x+1
A) \(A=-3x^2+x+1\)
\(A=-3\left(x^2-\dfrac{1}{3}x-\dfrac{1}{3}\right)\)
\(A=-3\left(x^2-2\cdot\dfrac{1}{6}\cdot x+\dfrac{1}{36}-\dfrac{13}{36}\right)\)
\(A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\)
Mà: \(-3\left(x-\dfrac{1}{6}\right)^2\le0\forall x\)
\(\Rightarrow A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\le\dfrac{13}{12}\forall x\)
Dấu "=" xảy ra khi:
\(x-\dfrac{1}{6}=0\Rightarrow x=\dfrac{1}{6}\)
Vậy: \(A_{max}=\dfrac{13}{12}.khi.x=\dfrac{1}{6}\)
B) \(B=2x^2-8x+1\)
\(B=2\left(x^2-4x+\dfrac{1}{2}\right)\)
\(B=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)
\(B=2\left(x-2\right)^2-7\)
Mà: \(2\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow B=2\left(x-2\right)^2-7\ge-7\forall x\)
Dấu "=" xảy ra khi:
\(x-2=0\Rightarrow x=2\)
Vậy: \(B_{min}=2.khi.x=2\)
Tìm GTLN ( hoặc GTNN ) của bt sau : a) A = 2x^2 + 10 - 1 b) B = 3x - 2x^2
a) \(A=2x^2\)\(+\)\(10\)\(-\)\(1\)
\(=2\left(x^2+5x-\frac{1}{2}\right)\)
\(=2\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{25}{4}-\frac{1}{2}\right)\)
\(=2\left[\left(x+\frac{5}{2}\right)^2-\frac{27}{4}\right]\)
\(=2\left(x+\frac{5}{2}\right)^2\)\(=\frac{27}{2}\)> hoặc = \(\frac{-27}{2}\)\(=-13,5\)
Dấu bằng xảy ra \(\Leftrightarrow\)\(x+\frac{5}{2}=0\)
\(x=\frac{-5}{2}=-2,5\)
Vậy GTLN của A bằng -13,5 khi x = -2,5
b) \(B=3x-2x^2\)
\(=\)\(-2\left(x^2-2.x.\frac{3}{4}+\frac{9}{16}-\frac{9}{16}\right)\)
\(=-2\left[\left(x-\frac{3}{4}\right)^2-\frac{9}{16}\right]\)
\(=-2\left(x-0,75\right)^2\)\(+\)\(\frac{9}{8}\)< hoặc = \(\frac{9}{8}\)\(=\)\(1,125\)
Dấu bằng xảy ra \(\Leftrightarrow\)\(x-0,75=0\)
\(x=0,75\)
Vậy GTLN của B bằng 1,125 khi x = 0,75
Tìm Gtln của A=4-2x^2 B=-3x^2+2x-5
A, -2x^2<,=0
4-2x^2<,=4
dấu = xảy ra <=> 2x^2=0
<=>x=0
vậy GTLN của A=4 đạt đc khi x=0
\(A=4-2x^2\le4\)(Vì \(x^2\ge0\))
Dấu '' = '' xảy ra khi: \(x=0\)
Vậy \(MaxA=4\Leftrightarrow x=0\)
\(B=-3x^2+2x-5\)
\(B=-3\left(x^2-\frac{2}{3}x+\frac{1}{9}\right)-\frac{14}{3}\)
\(B=-\left(x-\frac{1}{3}\right)^2-\frac{14}{3}\le\frac{-14}{3}\)
Dấu '' = '' xảy ra khi:
\(x-\frac{1}{3}=0\)
\(\Leftrightarrow x=\frac{1}{3}\)
Vậy \(MaxB=\frac{-14}{3}\Leftrightarrow\frac{1}{3}\)
bài 1 tìm x biết:
a,(2x+3)^2-(3x+2)(x-1)=(x-2)(x+1)
b,(3x+2)^2-(3-2x)^2=3x-2
c,x^3+2x^2+4x+8
d,x^4-2x^2+1
2,tìm gtln của
a,A=x^2-5x+1
b,B=2x^2+x
nếu ai làm đc thì thanks
dài quá bạn ơi viết từng câu thôi
tìm gtln của các biểu thức sau
a)A=-x^2+1/2
b)B=4x-x^2
c)C=-2x^2+x
d)D=4/3x-2x^2-1
e)E=4xy+4y+2x-2x^2-4x^2-6
Thật ra cách làm dạng bài này cũng gần giống như bài tìm gtnn bạn vừa hỏi, chỉ khác ở chỗ đặt dấu âm ra ngoài để tìm được gtln thôi.
Bạn xem lại đề câu e nhé.
1 Tìm GTNN của
M=x^2-3x+5
N=2x^2+3x
P=3x^2+5x
2 Tìm GTLN của
A=-x^2-5x+3
B=-2x^2+3x
HELP ME
Câu 1:
\(M=x^2-3x+5\)
\(M=x^2-2.\frac{3}{2}x+\frac{9}{4}+\frac{11}{4}\)
\(M=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Dấu = xảy ra khi \(x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)
Vậy Min M = 11/4 khi x=3/2
b)\(N=2x^2+3x\)
\(N=2\left(x^2+\frac{3}{2}x\right)\)
\(N=2\left(x^2+2.\frac{3}{4}x+\frac{9}{16}\right)-\frac{9}{8}\)
\(N=2\left(x+\frac{3}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)
Dấu = xảy ra khi \(x+\frac{3}{4}=0\Rightarrow x=-\frac{3}{4}\)
Vậy MIn N = -9/8 khi x=-3/4
c)Tự làm nha
Ta có : x2 - 3x + 5
= x2 - 2.x.\(\frac{3}{2}\) + \(\frac{3}{2}^2\) + \(\frac{11}{4}\)
= \(\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\in R\)
Nên : \(\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\) \(\ge\frac{11}{4}\forall x\in R\)
Vậy GTNN của biểu thức là : \(\frac{11}{4}\) khi \(x=\frac{3}{2}\)
Câu 2:
a)\(A=-x^2-5x+3\)
\(A=-\left(x^2+2.\frac{5}{2}x+\frac{25}{4}\right)+\frac{37}{4}\)
\(A=\frac{37}{4}-\left(x+\frac{5}{2}\right)^2\le\frac{37}{4}\)
Dấu = xảy ra khi \(x+\frac{5}{2}=0\Rightarrow x=-\frac{5}{2}\)
Vậy Max A = 37/4 khi x=-5/2
b)\(B=-2x^2+3x\)
\(B=-2\left(x^2-\frac{3}{2}x\right)\)
\(B=-2\left(x^2-2.\frac{3}{4}+\frac{9}{16}\right)+\frac{9}{8}\)
\(B=\frac{9}{8}-2\left(x-\frac{3}{4}\right)^2\le\frac{9}{8}\)
Dấu = xảy ra khi \(x-\frac{3}{4}=0\Rightarrow x=\frac{3}{4}\)
Vậy Max B=9/8 khi x=3/4
tìm GTNN của biểu thức : |2x+1|+|x-y+1|, b: |x+2|+1/2.|2x-1| tìm GTLN của biểu thức : |3x+2|-|2020-3x| các cao nhân giúp em với ạ