Những câu hỏi liên quan
PB
Xem chi tiết
CT
16 tháng 3 2019 lúc 16:44

Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

Vậy M < 1.

Bình luận (0)
KL
Xem chi tiết
H24
25 tháng 4 2021 lúc 17:04

Rút gọn ta được:

M=√a−1/√a

Viết M ở dạng M=1−1/√a

suy ra M<1

Bình luận (0)
 Khách vãng lai đã xóa
NT
29 tháng 4 2021 lúc 18:46

Với \(x>0;x\ne1\)

\(M=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)

\(=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)

\(=\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{\sqrt{a}-1}{\sqrt{a}}\)

\(=1-\frac{1}{\sqrt{a}}< 1\)hay M < 1 

Bình luận (0)
 Khách vãng lai đã xóa
PK
23 tháng 5 2021 lúc 20:57

= 1 - 1/√a < 1

Bình luận (0)
 Khách vãng lai đã xóa
SK
Xem chi tiết
LV
22 tháng 4 2017 lúc 20:49

Để học tốt Toán 9 | Giải bài tập Toán 9

Bình luận (1)
HB
Xem chi tiết
VT
17 tháng 9 2016 lúc 10:18

\(M=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}\right)^2-2\sqrt{a}+1}\)

     \(=\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)

    \(=\frac{\sqrt{a}-1}{\sqrt{a}}\)

Mà : \(\sqrt{a}-1< \sqrt{a}\Rightarrow\frac{\sqrt{a}-1}{\sqrt{a}}< 1\)

Vậy \(M< 1\)

Bình luận (0)
HB
Xem chi tiết
MH
6 tháng 7 2016 lúc 13:45

\(M=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{1}{\sqrt{a-1}}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}\right)^2-2\sqrt{a}+1}\)

\(=\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)

\(=\frac{\sqrt{a}-1}{\sqrt{a}}\)

Mà \(\sqrt{a}-1< \sqrt{a}\) => \(\frac{\sqrt{a}-1}{\sqrt{a}}< 1\)

Vậy M < 1.

Bình luận (0)
H24
Xem chi tiết
MC
Xem chi tiết
NT
18 tháng 5 2021 lúc 16:35

a,Với \(a>0;a\ne1\)

 \(M=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)

\(=\left(\frac{\sqrt{a}-1+a-\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)^2}\right).\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{a-1}{a+\sqrt{a}}\)

b, Ta có : \(1=\frac{a+\sqrt{a}}{a+\sqrt{a}}\)mà \(a-1=\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)\)

\(a+\sqrt{a}=\sqrt{a}\left(\sqrt{a}+1\right)\)vì \(\sqrt{a}-1< \sqrt{a}\)

Vậy \(\frac{a-1}{a+\sqrt{a}}< 1\)hay \(M< 1\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
LL
26 tháng 9 2021 lúc 16:16

a) \(M=\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}.\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

b) \(M=\dfrac{\sqrt{a}-1}{\sqrt{a}}=1-\dfrac{1}{\sqrt{a}}< 1\)

c) \(M=\dfrac{\sqrt{a}-1}{\sqrt{a}}=\dfrac{\sqrt{3-2\sqrt{2}}-1}{\sqrt{3-2\sqrt{2}}}=\dfrac{\sqrt{\left(\sqrt{2}-1\right)^2}-1}{\sqrt{\left(\sqrt{2}-1\right)^2}}=\dfrac{\sqrt{2}-1-1}{\sqrt{2}-1}=\dfrac{\sqrt{2}-2}{\sqrt{2}-1}\)

Bình luận (0)
NM
26 tháng 9 2021 lúc 16:16

\(a,M=\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ b,M=1-\dfrac{1}{\sqrt{a}}< 1\\ c,a=3-2\sqrt{2}\Leftrightarrow\sqrt{a}=\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}-1\\ \Leftrightarrow M=\dfrac{\sqrt{2}-1-1}{\sqrt{2}-1}=\dfrac{\sqrt{2}-2}{\sqrt{2}-1}=\dfrac{-\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=-\sqrt{2}\)

Bình luận (0)
TQ
Xem chi tiết
NT
30 tháng 6 2021 lúc 21:20

Bài 2: 

a) Ta có: \(P=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{3}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

b) Ta có: \(P-\dfrac{1}{3}=\dfrac{\sqrt{a}-2}{3\sqrt{a}}-\dfrac{1}{3}\)

\(=\dfrac{\sqrt{a}-2-\sqrt{a}}{3\sqrt{a}}=\dfrac{-2}{3\sqrt{a}}< 0\forall a\) thỏa mãn ĐKXĐ

\(\Leftrightarrow P< \dfrac{1}{3}\)

Bình luận (0)