Những câu hỏi liên quan
PB
Xem chi tiết
CT
7 tháng 5 2019 lúc 4:32

Ta có: x + y = ( a 1 2 +  b 1 ) + ( a 2 2  +  b 2 ) = ( a 1 +  a 2 ) 2  + ( b 1  +  b 2 )

Vì  a 1 ,  a 2 ,  b 1 ,  b 2  là các số hữu tỉ nên  a 1  +  a 2 ,  b 1  +  b 2  cũng là số hữu tỉ.

Lại có: xy = ( a 1 2  +  b 1 )( a 2 2  +  b 2 ) = 2 a 1 a 2  +  a 1 b 2 2  +  a 2 b 1 2  +  b 1 b 2

= ( a 1 b 2  +  a 2 b 1 ) 2  + (2 a 1 a 2  +  b 1 b 2 )

Vì a 1 ,  a 2 ,  b 1 ,  b 2 là các số hữu tỉ nên   a 1 b 2  +  a 2 b 1 ,  a 1 a 2  +  b 1 b 2  cũng là các số hữu tỉ.

Bình luận (0)
H24
Xem chi tiết
TN
Xem chi tiết
NN
Xem chi tiết
H24
14 tháng 8 2015 lúc 19:28

2,

a,Vì  (2x+1) (3y-2)=12

\(\Rightarrow\left(2x+1;3y-2\right)\inƯ\left(12\right)=\left\{-1;1;-2;2;-3;3;-4;4;-6;6;-12;12\right\}\)

Lập bảng tự tính tiếp nhé............

Vậy ta lập được các cặp (x;y)là :(Tự tìm)

b,Làm tương tự a.

Nhớ nhấn đúng nha!

Bình luận (0)
CM
Xem chi tiết
DT
Xem chi tiết
1D
Xem chi tiết
NT
25 tháng 10 2021 lúc 23:08

a: TXĐ: \(D=R\backslash\left\{-\dfrac{1}{2}\right\}\)

b: TXĐ: \(D=R\backslash\left\{-3;1\right\}\)

c: TXĐ: \(D=\left[-\dfrac{1}{2};3\right]\)

Bình luận (0)
NT
Xem chi tiết
PT
21 tháng 1 2019 lúc 23:00

Giả sử (x;p) = 1 thì ta thấy (y,p) = 1

Ta có: \(x^2\equiv-y^2\left(mod\text{ p}\right)\)  

\(\Leftrightarrow x^{4k+2}\equiv-y^{4k+2}\left(mod\text{ p}\right)\)

\(\Leftrightarrow1\equiv-1\left(mod\text{ p}\right)\)(Định lí Fermat)

Do đó \(\left(x;p\right)\ne1\Rightarrow x⋮p\)và dễ thấy \(y⋮p\)(Đpmcm)

Bình luận (0)
LC
Xem chi tiết