Những câu hỏi liên quan
KK
Xem chi tiết
DH
31 tháng 7 2017 lúc 16:20

a)

4^5+4^5+4^5+4^5/3^5+3^5+3^5 =4^5.4/3^5.3

=4^6/3^6

tương tự ta có phân số còn lại là

6^5.6/=2^5.2

=6^6/2^6

ta có 4^6/3^6+6^6/2^6 ta rút gọn 4^6 với 2^6 và 6^6 với 3^6 được 2/1+2/1=2^2

suy ra số đó là 2

Bình luận (0)
NN
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
YL
Xem chi tiết
NT
22 tháng 2 2022 lúc 21:38

Câu 2: 

#include <bits/stdc++.h>

using namespace std;

double p1,p2;

int i,n;

int main()

{

cin>>n;

p1=1;

p2=1;

for (i=1; i<=n; i++)

{

if (i%2==0) p2=p2*(i*1.0);

else p1=p1*(i*1.0);

}

cout<<fixed<<setprecision(2)<<p1<<endl;

cout<<fixed<<setprecision(2)<<p2;

return 0;

}

Bình luận (0)
TL
Xem chi tiết
FF
6 tháng 8 2016 lúc 10:07

Câu 1: 

(Đk n € Z) Ta có :n^3+11n=n^3-n+12n=n(n^2-1)+12n=(n-1)n(n... 
vì n là số nguyên nên (n-1)n(n+1) là tích của 3 số nguyên liên tiếp nên phải chia hết cho 6;mà 12 lại chia hết cho 6 =>12n cũng chia hết cho 6. 
Vậy (n-1)n(n+1)+12n chia hết cho 6 => n^3+11n chia hết cho 6 (đpcm) 

Câu 2: Gọi biểu thức trên là a ta có:

 A=mn(m²-n²) 
   = mn(m² - 1 - n² + 1) 
   = mn [(m-1)(m+1) - (n-1)(n+1)] 
   = n(m-1)m(m+1) - m(n-1)n(n+1) 
{n(m-1)m(m+1) chia hết cho 3  (tính 3 số tự nhiên liên tiếp) 
{m(n-1)n(n+1) chia hết cho 3    (tính 3 số tự nhiên liên tiếp) 
=> n(m-1)m(m+1) - m(n-1)n(n+1) chia hết cho 3 
=> A chia hết cho 3 

Câu 3:

 n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n 
ba số liên tiếp thì chia hết cho 2 ; chia hết cho 3 --> tổng trên chia hết cho 6

Vậy n(n+1)(2n+1) chia hết cho 6

Câu 4: Gọi biểu thức trên là B ta có:

* B=n^2(n^4-1) = n^2(n^2+1)(n^2 - 1) 
= n^2(n^2 - 4 + 5)(n^2 - 1) = n^2(n^2 - 1)(n^2 - 4) + n^2(n^2 - 1).5 
= (n - 2)(n-1).n^2(n+1)(n+2) + n^2(n^2 - 1).5 
(n - 2)(n-1).n^2(n+1)(n+2) chứa tích 5 số liên tiếp chia hết cho 5  và n^2(n^2 - 1).5 cũng chia hết cho 5 
=> B chia hết cho 5 

*B=n^2(n^4-1) = n^2(n^2+1)(n^2 -1) là tích 3 số tự nhiên liên tiếp chia hết cho 3 
=> B chia hết cho 3 

*B=n^2(n^4-1) = n^2(n^2+1)(n^2 -1) = n^2(n^2+1)(n+1)(n-1) 
n chẵn => n^2 chia hết cho 4 => A(n) chia hết cho 4 
n lẻ => n +1 và n -1 là 2 số chẵn => (n+1)(n-1) chia hết cho 4 => A(n) chia hết cho 4 
=> B chia hết cho 4 

Vì: 3,4,5 nguyên tố cùng nhau => Bchia hết cho 3.4.5 = 60

Câu 5: Gọi biểu thức trên là C ta có:

Đặt C = mn(m4-n4) = mn(m2-n2)(m2+n2)=mn(m-n)(m+n)(m2+n2) 
*)Nếu 1 trong 2 số m,n chia hết cho 2 suy ra C chia hết cho 2. 
Nếu k0 thì m,n lẻ suy ra m-n chia hết cho 2 suy ra C chia hết cho 2. 
Vậy C chia hết cho 2 
*)Nếu m,n có 1 số chia hết cho 3 => C chia hết cho 3. 
Nếu k0: +)m,n đồng dư mod 3 => m-n chia hết cho 3 =>C chia hết cho 3 
+)m,n chia 3 dư lần lượt là 1, 2 =>m+n chia hết cho 3 => C chia hết cho 3. 
Vậy C chia hết cho 3. 
*)Nếu m,n có 1 số chia hết cho 5 => C chia hết cho 5 
Nếu k0 +)m,n đồng dư mod 5 =>m-n  chia hết cho 5 
+)m,n có số dư mod 5 là (1,2), (1,3), (1,4), (2,3), (2,4),(3,4) 
Các trường hợp (1,4),(2,3) =>m+n  chia hết cho5 
Còn lại m2+n2 chai hết cho 5 (do 1 số chính phương chia 5 dư 0,1,4 nên bạn có thể tự thử các trường hợp còn lại) 
Vậy C chia hết cho 5. 
Từ kết quả trên => C chia hết cho 30( đpcm). 

Bình luận (0)
NA
Xem chi tiết
LL
Xem chi tiết
H24
Xem chi tiết
MT
Xem chi tiết
GD

Bài 4: Sao tìm được n khi chỉ cho 1 vế

Bài 6:

\(\left(2x-3\right)^2=\dfrac{196}{225}=\left(\dfrac{14}{15}\right)^2=\left(-\dfrac{14}{15}\right)^2\\ \Leftrightarrow\left[{}\begin{matrix}2x-3=\dfrac{14}{15}\\2x-3=-\dfrac{14}{15}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{14}{15}+3=\dfrac{59}{15}\\2x=\dfrac{-14}{15}+3=-\dfrac{31}{15}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{59}{15}:2=\dfrac{59}{30}\\x=-\dfrac{31}{15}:2=-\dfrac{31}{30}\end{matrix}\right.\)

 

Bình luận (4)