Những câu hỏi liên quan
H24
Xem chi tiết
PB
Xem chi tiết
CT
22 tháng 8 2019 lúc 11:30

Đáp án B

Bình luận (0)
H24
Xem chi tiết
H24
30 tháng 8 2023 lúc 19:54

a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = n^2 - 1:

u1 = 1^2 - 1 = 0 u2 = 2^2 - 1 = 3 u3 = 3^2 - 1 = 8 u4 = 4^2 - 1 = 15

Vậy u1 = 0, u2 = 3, u3 = 8, u4 = 15.

b) Để tìm số hạng thứ mấy trong dãy có giá trị 99, ta giải phương trình n^2 - 1 = 99:

n^2 - 1 = 99 n^2 = 100 n = 10 hoặc n = -10

Vì số hạng của dãy phải là số tự nhiên nên ta chọn n = 10. Vậy số hạng thứ mấy có giá trị 99 là u10.

a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = (2n - 1)/(n + 1):

u1 = (21 - 1)/(1 + 1) = 1/2 u2 = (22 - 1)/(2 + 1) = 3/3 = 1 u3 = (23 - 1)/(3 + 1) = 5/4 u4 = (24 - 1)/(4 + 1) = 7/5

Vậy u1 = 1/2, u2 = 1, u3 = 5/4, u4 = 7/5.

b) Để tìm số hạng thứ mấy trong dãy có giá trị 137137, ta giải phương trình (2n - 1)/(n + 1) = 137137:

(2n - 1)/(n + 1) = 137137 2n - 1 = 137137(n + 1) 2n - 1 = 137137n + 137137 137135n = 137138 n = 1

Vậy số hạng thứ mấy có giá trị 137137 là u1.

Bình luận (0)
NT
30 tháng 8 2023 lúc 21:24

loading...loading...

Bình luận (0)
NC
Xem chi tiết
PB
Xem chi tiết
CT
13 tháng 7 2018 lúc 14:01

Đáp án A

Bình luận (0)
PB
Xem chi tiết
CT
9 tháng 6 2017 lúc 6:44

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 8 2017 lúc 4:18

Chọn B.

Phương pháp: Từ công thức truy hồi suy ra kết quả.

Cách giải: 

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 4 2018 lúc 17:39

Chọn B

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 5 2019 lúc 15:16

u1 = 1

u2 = 1 + 12

u3 = 1 + 12 + 22

u4 = 1 + 12 + 22 + 32

...

 Đáp án A

Bình luận (0)