Những câu hỏi liên quan
YM
Xem chi tiết
NT
22 tháng 12 2021 lúc 9:32

\(A=n\left(n+1\right)+1\)

Vì n(n+1) chia hết cho 2

nên A ko chia hết cho 2

Bình luận (0)
NM
8 tháng 10 2022 lúc 7:16

sai roi

 

Bình luận (0)
SK
Xem chi tiết
MV
18 tháng 5 2017 lúc 11:21

\(A=n^2+n+1\left(n\in N\right)\\ A=n\cdot n+n\cdot1+1\\ A=n\cdot\left(n+1\right)+1\)

a) Ta có: \(n\cdot\left(n+1\right)\) là tích hai số tự nhiên liên tiếp, sẽ có một trong hai số là số chẵn \(\Rightarrow n\cdot\left(n+1\right)⋮2\)

\(1⋮̸2\) \(\Rightarrow n\cdot\left(n+1\right)+1⋮̸2\Leftrightarrow A⋮̸2\)

Vậy \(A⋮̸2\)

b)

Ta có: \(n\cdot\left(n+1\right)\) là tích hai số tự nhiên liên tiếp có chữ số tận cùng là 0, 2, 6 \(\Rightarrow\) \(n\cdot\left(n+1\right)+1\) có chữ số tận cùng là 1, 3, 7 không chia hết chia 5

Vậy \(A⋮̸5\)

Bình luận (0)
TM
18 tháng 5 2017 lúc 11:30

\(A=n^2+n+1=n\left(n+1\right)+1\left(n\in N\right)\)

a) Vì n và n+1 là 2 số tự nhiên liên tiếp , mà trong 2 số tự nhiên liên tiếp sẽ có một số chẵn .

=> n(n+1) là số chẵn

=> n(n+1) + 1 là số lẻ

=> A không chia hết cho 2 ( đpcm )

b) Xét tận cùng của n có thể là 0;1;2;3;4;5;6;7;8;9

=> n+1 có thể có tận cùng là 1;2;3;4;5;6;7;8;9

=> n(n+1) có thể có tận cùng là 0;2;6

=> n(n+1)+1 có tận cùng là 1;3;7

Vậy A không chia hết cho 5 ( đpcm)

Bình luận (0)
DN
31 tháng 5 2017 lúc 16:23

A=n.n+n.1+1

A=n.(n+1)+1(đây là bước nhân một tổng với 1 số của cấp 1)

a, Ta có:

n.(n+1) là tích của 2 số tự nhiên liên tiếp ( 1 chẵn và 1 lẻ ).

=> Ta được: n.(n+1)+1:2

Mà 1 lại không chia được cho 2.

Như vậy n.(n+1)+1 không chia hết cho 2=A không chia hết cho 2.

b,Ta có: n.(n+1) là tích của 2 số tự nhiên có chữ số tận cùng là 0,2,6.

Sau khi cộng thêm 1 thì tích đó có các trường hợp chữ số tận cùng như sau :

-Cs cuối của tích là 0+1=1, sẽ không chia hết cho 5.

-Cs cuối của tích là 2+1=3, sẽ không chia hết cho 5.

-Cs cuối của tích là 6+1=7, không chia hết cho 5.

=> A không chia hết cho 5.

Ủng hộ mình nha

Bình luận (0)
ST
Xem chi tiết
DL
8 tháng 12 2015 lúc 21:35

a)Nếu n=2k(kEN)

thì n2+n+1=4k^2+2k+1(ko chia hết cho 2, vì 1 ko chia hết cho 2)

Nếu n=2k+1(kEN)

thì n2+n+1=n(n+1)+1=(2k+1)(2k+1+1)+1=(2k+1)(2k+2)+1=(2k)(2k+2)+2k+2+1=4k^2+4k+2k+2+1=4k^2+6k+3(ko chia hết cho 2 vì 3 ko chia hết cho 2)

Vậy với mọi nEN thì n2+n+1 ko chia hết cho 2

b)n(n+1)(5n+1)=(n2+n)(5n+1)=5n3+n2+5n2+n

Nếu n=2k(kEN )

thì n(n+1)(5n+1)=10k3+2k2+10k2+2k(chia hết cho 2)

Nếu n=2k+1(kEN)

thì n(n+1)(5n+1)=5(2k+1)3+(2k+1)+5(2k+1)2+2k+1=...................................

tương tự, n=3k;3k+1;3k+2

mỏi tay chết đi được, mấy con số còn bay đi lung tung

Bình luận (0)
TQ
Xem chi tiết
HG
21 tháng 10 2015 lúc 23:25

2,

+ n chẵn

=> n(n+5) chẵn 

=> n(n+5) chia hết cho 2

+ n lẻ

Mà 5 lẻ

=> n+5 chẵn => chia hết cho 2

=> n(n+5) chia hết cho 2

KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N

Bình luận (0)
HG
21 tháng 10 2015 lúc 23:33

3, 

A = n2+n+1 = n(n+1)+1

a, 

+ Nếu n chẵn

=> n(n+1) chẵn 

=> n(n+1) lẻ => ko chia hết cho 2

+ Nếu n lẻ

Mà 1 lẻ

=> n+1 chẵn

=> n(n+1) chẵn

=> n(n+1)+1 lẻ => ko chia hết cho 2

KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)

b, + Nếu n chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

+ Nếu n chia 5 dư 1

=> n+1 chia 5 dư 2

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 2

=> n+1 chia 5 dư 3

=> n(n+1) chia 5 dư 1

=> n(n+1)+1 chia 5 dư 2

+ Nếu n chia 5 dư 3

=> n+1 chia 5 dư 4

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 4

=> n+1 chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)

Bình luận (0)
HN
Xem chi tiết
TT
19 tháng 7 2016 lúc 15:34

dễ mà :

a . A = n^2 + n + n = n ( n + 1 ) + 1 

n , n + 1 là hai số tự nhiên liến tiếp => n ( n + 1 ) là số chẵn 

=> n ( n + 1 ) + 1 là số lẻ 

=> A không chia hết cho 2 

b . Ta có: n^2 + n + 2 = n(n+1) + 2. 
n(n+1) là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6. 
Suy ra: n(n+1)+2 có chữ số tận cùng là 2; 4; 8. 
Mà: 2; 4; 8 không chia hết cho 5. 
Nên: n(n+1)+2 không chia hết cho 5. 

Bình luận (0)
DT
19 tháng 7 2016 lúc 15:37

a) *khi n là số lẻ =>n2 là số lẻ ; n+1 là số chẳn

=>A=n2+n+1 là số lẽ không chia hết cho 2

*khi n  là số chẳn=> n2 là số chẳn ; n+1 là số lẻ

=>A=n2+n+1 là số lẻ không chia hết cho 2

Vậy A không chia hết cho 2

b)Ta có A=n2+n+1=n.(n+1)+1

Ta thấy: n.(n+1) là tích 2 số tự nhiên liên tiếp nên n.(n+1) là số chẳn:

=>n.(n+1) có thể tận cùng là 0;2;4;6;8

Với n.(n+1)=0;2;6;8 => A=n(n+1)+1 không có tận cùng là 0 hoặc 5 nên không chia hết cho 5

Với n.(n+1)=4

Ta lại có : 4=1.4=4.1=2.2

=>n.(n+1) khác 4

Vậy A không chia hết cho 5

Bình luận (0)
IM
19 tháng 7 2016 lúc 15:37
n2 + n + 1 = n(n+1) + 1.

Vì n(n+1) là tích hai số tự nhiên liên tiếp, trong 2 số liên tiếp luôn luôn có 1 số chẵn => n.(n+1) là số chẵn, cộng thêm 1 sẽ là số lẻ => n(n+1) + 1 là số lẻ, không chia hết cho 2          (1)

Ta biết 2 số tự tích của nhiên liên tiếp chỉ có chỉ có thể là 20;2;6

=> n.(n+1) tận cùng là 0, 2, 6

=> n.(n+1) +1 tận cùng là: 1, 3, 7  không chia hết cho 5           (2)

Từ (1) và (2) 

=> đpcm

Bình luận (0)
NT
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
PT
31 tháng 10 2018 lúc 11:02

a)tr hp 1 : n : số lẻ

n2 : số lẻ

n2+n : số chẵn

n2+n+1 : số lẻ

tr hp 2 : n : số chẵn

n2 : số chẵn

n2+n : số chẵn

n2+n+1 : số lẻ

=> ko chia hết cho 2

Bình luận (0)
AB
Xem chi tiết