Rút gọn biểu thức: G= GTTD 2 +x - (x +1) với x lớn hơn hoặc bằng -2
Rút gọn biểu thức chứa chữ A = (1/√x -1 + 1/√x +1 ) : 1/√x -1 với x lớn hơn hoặc bằng 0 , x khác 1 B = 2√x /√x -5 - x -25√x / 25 -x với lớn hơn hoặc bằng 0 , x khác 25
\(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{1}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{1}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)
Giúp mình với ạ Rút gọn biểu thức: P=1/2+căn x + 2/2- căn x - 4 căn x/ 4x (a lớn hơn hoặc bằng 0; x khác 4)
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
Rút gọn biểu thức sau:
A= 2|3-x| + 5-4x với x lớn hơn hoặc bằng 3; x< 1
mai minh
học bài
này rùi bn
ráng đợi thêm
2 ngày nữa nhé
Cho x thuộc Z , hãy bỏ dấu giá trị tuyệt đối rồi rút gọn biểu thức N = |2 + x| - ( x + 1 ) với x lớn hơn hoặc bằng -2
N=\(\left|2+x\right|-\left(x+1\right)=2+x-x-1=1\) (vì \(x\ge-2\Rightarrow\left|2+x\right|=2+x\))
Rút gọn biểu thức P= 1/√x-1 + 1/√x+1 + 1 với x lớn hơn hoặc bằng 0, x khác 1
Giúp mình với
ĐKXĐ: x≥0,x≠1.Ở đây mình làm ngắn gọn nhé, bạn chỉ cần ghi đề bài dưới đkxđ là được.
P=(√x+1+√x-1+x+1)/(√x-1)(√x+1)
= (x+2√x+1)/(√x+1)(√x-1)
= (√x+1)^2/(√x+1)(√x-1)
= (√x+1)/(√x-1)
Vậy P=(√x+1)/(√x-1) với x ≥ 0,x≠1
bỏ dấu gttd rồi rút gọn biểu thức
|x+1| + |x-2| với -1<x<2
rút gọn biểu thức với lớn hơn hoặc bằng 0: A=\(\left(1-\frac{1}{\sqrt{x+1}}\right)\left(x+\sqrt{x}\right)\)
P=\(\left(\frac{3}{x-\sqrt{x-2}}+\frac{1}{\sqrt{x+1}}\right)\left(\sqrt{x-2}\right)\) với x lớn hơn hoặc bằng 0 và x khác 4
Rút gọn biểu thức sau: a) 1-x√x /1-√x + √x ( x lớn hơn hoặc bằng 0 , x khác 1)
\(=\dfrac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}{1-\sqrt{x}}+\sqrt{x}=x+2\sqrt{x}+1=\left(\sqrt{x}+1\right)^2\)
\(\dfrac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}=\dfrac{1-x\sqrt{x}+\sqrt{x}\left(1-\sqrt{x}\right)}{1-\sqrt{x}}\)
\(=\dfrac{1-x\sqrt{x}+\sqrt{x}-x}{1-\sqrt{x}}=\dfrac{1-x}{1-\sqrt{x}}-\dfrac{x\sqrt{x}-\sqrt{x}}{1-\sqrt{x}}\)
\(=\dfrac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{1-\sqrt{x}}-\dfrac{\sqrt{x}\left(x-1\right)}{1-\sqrt{x}}\)
\(=1+\sqrt{x}+\sqrt{x}\left(1+\sqrt{x}\right)\)
\(=1+\sqrt{x}+\sqrt{x}+x=x+2\sqrt{x}+1=\left(\sqrt{x}+1\right)^2\)
rút gọn các biểu thức sau:
a) \(\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)-\sqrt{x^3}\) với x lớn hơn hoặc = 0
b) \(\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\) với a lớn hơn hoặc = 0
a: \(\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)-\sqrt{x^3}\)
\(=1-x\sqrt{x}-x\sqrt{x}\)
\(=1-2x\sqrt{x}\)
b: \(\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\cdot\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\)
\(=\left(\dfrac{\left(1-\sqrt{a}\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)^2\left(\dfrac{\left(1-\sqrt{a}\right)\cdot\left(a+\sqrt{a}+1\right)}{1-\sqrt{a}}+\sqrt{a}\right)\)
\(=\left(\dfrac{1}{\sqrt{a}+1}\right)^2\cdot\left(a+\sqrt{a}+1+\sqrt{a}\right)\)
\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)^2}=1\)