Những câu hỏi liên quan
H24
Xem chi tiết
NT
31 tháng 10 2021 lúc 13:56

\(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{1}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)

Bình luận (0)
TT
Xem chi tiết
AH
4 tháng 5 2023 lúc 0:32

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.

Bình luận (0)
TM
Xem chi tiết
MP
27 tháng 9 2016 lúc 12:34

mai minh 

học bài

này rùi bn 

ráng đợi thêm

2 ngày nữa nhé

Bình luận (0)
NH
Xem chi tiết
NV
25 tháng 11 2015 lúc 20:24

N=\(\left|2+x\right|-\left(x+1\right)=2+x-x-1=1\) (vì \(x\ge-2\Rightarrow\left|2+x\right|=2+x\))

Bình luận (0)
TT
Xem chi tiết
H24
4 tháng 5 2023 lúc 22:31

ĐKXĐ: x≥0,x≠1.Ở đây mình làm ngắn gọn nhé, bạn chỉ cần ghi đề bài dưới đkxđ là được.

P=(√x+1+√x-1+x+1)/(√x-1)(√x+1)

=   (x+2√x+1)/(√x+1)(√x-1)

=   (√x+1)^2/(√x+1)(√x-1)

=  (√x+1)/(√x-1)

 Vậy P=(√x+1)/(√x-1) với x ≥ 0,x≠1

Bình luận (0)
PA
Xem chi tiết
SS
Xem chi tiết
VH
Xem chi tiết
NT
10 tháng 5 2022 lúc 19:35

\(=\dfrac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}{1-\sqrt{x}}+\sqrt{x}=x+2\sqrt{x}+1=\left(\sqrt{x}+1\right)^2\)

Bình luận (0)
NT
10 tháng 5 2022 lúc 19:36

\(\dfrac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}=\dfrac{1-x\sqrt{x}+\sqrt{x}\left(1-\sqrt{x}\right)}{1-\sqrt{x}}\)

                            \(=\dfrac{1-x\sqrt{x}+\sqrt{x}-x}{1-\sqrt{x}}=\dfrac{1-x}{1-\sqrt{x}}-\dfrac{x\sqrt{x}-\sqrt{x}}{1-\sqrt{x}}\)

                          \(=\dfrac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{1-\sqrt{x}}-\dfrac{\sqrt{x}\left(x-1\right)}{1-\sqrt{x}}\)

                               \(=1+\sqrt{x}+\sqrt{x}\left(1+\sqrt{x}\right)\)

                               \(=1+\sqrt{x}+\sqrt{x}+x=x+2\sqrt{x}+1=\left(\sqrt{x}+1\right)^2\)

Bình luận (0)
TP
Xem chi tiết
NT
24 tháng 10 2023 lúc 12:19

a: \(\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)-\sqrt{x^3}\)

\(=1-x\sqrt{x}-x\sqrt{x}\)

\(=1-2x\sqrt{x}\)

b: \(\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\cdot\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\)

\(=\left(\dfrac{\left(1-\sqrt{a}\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)^2\left(\dfrac{\left(1-\sqrt{a}\right)\cdot\left(a+\sqrt{a}+1\right)}{1-\sqrt{a}}+\sqrt{a}\right)\)

\(=\left(\dfrac{1}{\sqrt{a}+1}\right)^2\cdot\left(a+\sqrt{a}+1+\sqrt{a}\right)\)

\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)^2}=1\)

Bình luận (0)