Những câu hỏi liên quan
PB
Xem chi tiết
CT
29 tháng 12 2019 lúc 7:47

Bình luận (0)
NT
Xem chi tiết
HQ
15 tháng 2 2021 lúc 23:23

bài này ez mà :D ( Tự vẽ hình ) Vì EF // AB nên ta có thể viết như sau: 

\(\overrightarrow{AB}.\overrightarrow{EG}=\overrightarrow{EF}.\overrightarrow{EG}=\overrightarrow{EF}\left(\overrightarrow{EF}+\overrightarrow{FG}\right)=EF^2+\overrightarrow{EF}.\overrightarrow{FG}=a^2\)

( Vì: \(\overrightarrow{EF}.\overrightarrow{FG}=\left|\overrightarrow{EF}\right|.\left|\overrightarrow{FG}\right|.\cos\left(\overrightarrow{EF},\overrightarrow{FG}\right)=0\)) ( \(\cos\left(\overrightarrow{EF},\overrightarrow{FG}\right)=90^0=0\)

 

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 6 2018 lúc 9:57

Đáp án : C

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 3 2018 lúc 12:00

Chọn C

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 10 2019 lúc 16:59

Đáp án là A.

Ta có:  

A B → . E G → = A B . E G . cos A B → ; E G → ^ = A B . A C . cos B A C ^ = a 2 2 . 2 2 = a 2 .

Bình luận (0)
DN
Xem chi tiết
NL
14 tháng 3 2022 lúc 6:37

a. Gọi cạnh lập phương là a

Ta có: \(AC=\sqrt{AB^2+AD^2}=a\sqrt{2}\) 

\(AH=\sqrt{AD^2+DH^2}=a\sqrt{2}\)

\(CH=\sqrt{CD^2+DH^2}=a\sqrt{2}\)

\(\Rightarrow\Delta ACH\) đều \(\Rightarrow\widehat{CAH}=60^0\)

b.

Do \(B'C||A'D\Rightarrow\) góc giữa A'B và B'C bằng góc giữa A'B và A'D

Tương tự câu a, ta có tam giác A'BD đều \(\Rightarrow\widehat{BA'D}=60^0\)

c.

Do IJ song song SB (đường trung bình), CD song song AB \(\Rightarrow\) góc giữa IJ và CD bằng góc giữa SB và AB

Tam giác SAB đều (các cạnh bằng a) \(\Rightarrow\widehat{SBA}=60^0\)

d.

\(\overrightarrow{EG}=\overrightarrow{AC}\Rightarrow\widehat{\left(\overrightarrow{AF};\overrightarrow{EG}\right)=\widehat{\left(\overrightarrow{AF};\overrightarrow{AC}\right)}=\widehat{FAC}=60^0}\) do tam giác FAC đều 

Bình luận (1)
DN
Xem chi tiết
NL
8 tháng 3 2022 lúc 23:14

1. Do \(EG||AC\Rightarrow\widehat{\left(\overrightarrow{AF};\overrightarrow{EG}\right)}=\widehat{\left(\overrightarrow{AF};\overrightarrow{AC}\right)}=\widehat{FAC}\)

Mà \(AF=AC=CF=AB\sqrt{2}\Rightarrow\Delta ACF\) đều

\(\Rightarrow\widehat{FAC}=60^0\)

2.

Do I;J lần lượt là trung điểm SC, BC \(\Rightarrow IJ\) là đường trung bình tam giác SBC

\(\Rightarrow IJ||SB\)

Lại có \(CD||BA\Rightarrow\widehat{\left(IJ;CD\right)}=\widehat{SB;BA}=\widehat{SBA}=60^0\) (do các cạnh của chóp bằng nhau nên tam giác SAB đều)

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 1 2018 lúc 16:05

Bình luận (0)
ND
Xem chi tiết
LS
24 tháng 3 2022 lúc 19:31

c

Bình luận (0)
H24
24 tháng 3 2022 lúc 19:32

C

Bình luận (0)
VH
24 tháng 3 2022 lúc 19:32

c

Bình luận (0)