Những câu hỏi liên quan
PB
Xem chi tiết
CT
10 tháng 2 2019 lúc 10:18

Ta có

(1 - 2i)x + (1 + 2i)y = 1 + i

<=> (x + y) + (2y - 2x)i = 1 + i

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án A.

Bình luận (0)
H24
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
KS
2 tháng 3 2019 lúc 16:48

B tự c/m BĐT \(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)nhé.

Dấu " = " xảy ra \(\Leftrightarrow x=y=z\)

Áp dụng :

\(x^4+y^4+z^4\ge\frac{1}{3}.\left(x^2+y^2+z^2\right)^2\ge\frac{1}{3}.\left[\frac{1}{3}.\left(x+y+z\right)^2\right]^2=\frac{1}{27}.\left(x+y+z\right)^4=\frac{1}{27}.2^4=\frac{16}{27}\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=z=\frac{2}{3}\)

KL:...

 
Bình luận (0)
DT
2 tháng 3 2019 lúc 11:48

vận dụng bất đẳng thức x^2+y^2+z^2 \(\ge\) (x+y+z)^2/3

Bình luận (0)
KS
2 tháng 3 2019 lúc 16:44

Áp dụng BĐT AM-GM ta có:

\(x^4+\frac{16}{81}+\frac{16}{81}+\frac{16}{81}\ge4.\sqrt[4]{x^4.\frac{16}{81}.\frac{16}{81}.\frac{16}{81}}=\frac{32}{27}x\)

Dấu " = " xảy  ra \(\Leftrightarrow x^4=\frac{16}{81}\Leftrightarrow x=\frac{2}{3}\)

Tương tự:

\(y^4+\frac{16}{81}+\frac{16}{81}+\frac{16}{81}\ge4.\sqrt[4]{y^4.\frac{16}{81}.\frac{16}{81}.\frac{16}{81}}=\frac{32}{27}y\)

\(z^4+\frac{16}{81}+\frac{16}{81}+\frac{16}{81}\ge4.\sqrt[4]{z^4.\frac{16}{81}.\frac{16}{81}.\frac{16}{81}}=\frac{32}{27}z\)

Dấu " = " xảy  ra \(\Leftrightarrow y^4=\frac{16}{81}\Leftrightarrow y=\frac{2}{3}\)

                              \(z^4=\frac{16}{81}\Leftrightarrow z=\frac{2}{3}\)

Cộng vế với vế của 3 BĐT trên ta có:

\(x^4+y^4+z^4+\frac{16}{81}.9\ge\frac{32}{27}\left(x+y+z\right)\)

\(\Leftrightarrow x^4+y^4+z^4\ge\frac{16}{27}\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=z=\frac{2}{3}\)

Vậy Min \(x^4+y^4+z^4=\frac{16}{27}\)\(\Leftrightarrow x=y=z=\frac{2}{3}\)

 
Bình luận (0)
NH
Xem chi tiết
MT
Xem chi tiết
MT
26 tháng 7 2021 lúc 17:06

tks mn

 

Bình luận (0)
NT
26 tháng 7 2021 lúc 22:24

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\left|3y-1\right|\ge0\forall y\)

\(\left|z+2\right|\ge0\forall z\)

Do đó: \(\left(x-1\right)^2+\left|3y-1\right|+\left|z+2\right|\ge0\forall x,y,z\)

Dấu '=' xảy ra khi \(\left(x,y,z\right)=\left(1;\dfrac{1}{3};-2\right)\)

Bình luận (0)
TH
Xem chi tiết
NC
1 tháng 10 2020 lúc 10:23

Hướng dẫn:

Ta có: \(x\le1\Rightarrow1-x\ge0\)\(x+y-3\ge0\)

Đặt: a = 1 - x và b = x + y - 3 ; với a; b không âm 

=> y = a + b +2; x = 1 - a 

Thế vào ta có: P = \(3\left(1-a\right)^2+3\left(1-a\right)\left(a+b+2\right)+\left(a+b+2\right)^2\)

Tìm min P với a; b không âm.

Bình luận (0)
 Khách vãng lai đã xóa
PK
Xem chi tiết
NH
Xem chi tiết