tìm số nguyên n sao cho (3n+2) chia hết cho (n-1)
1, tìm số tự nhiên N sao cho 3n+7 chia hết cho n+1
2, tìm số nguyên n sao cho 2n+ 3/3n+
\(1,3n+7=3n+3+4=3\left(n+1\right)+4⋮\left(n+1\right)\\ =>n+1\inƯ\left(4\right)\\ Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\\ TH1,n+1=1\\ =>n=0\\ TH2,n+1=-1\\ =>n=-2\\ TH3,n+1=2\\ =>n=1\\ TH3,n+1=-2\\ =>n=-3\\ TH4,n+1=4\\ =>n=3\\ TH5,n+1=-4\\ =>n=-5\)
Tìm số nguyên n sao cho :
a)3n+2 chia hết cho n-1
b)3n+24 chia hết cho n-4
c)3n+5 chia hết cho n+1
a) 3n + 2 chia hết cho n - 1
\(\Rightarrow\) 3n - 3 + 5 chia hết cho n - 1
\(\Rightarrow\) 3(n - 1) + 5 chia hết cho n - 1
\(\Rightarrow\) 5 chia hết cho n - 1
\(\Rightarrow\) n - 1 \(\in\) Ư(5) = {-1; 1; -5; 5}
\(\Rightarrow\) n \(\in\) {0; 2; -4; 6}
b) 3n + 24 chia hết cho n - 4
\(\Rightarrow\) 3n - 12 + 36 chia hết cho n - 4
\(\Rightarrow\) 3(n - 4) + 36 chia hết cho n - 4
\(\Rightarrow\) 36 chia hết cho n - 4
\(\Rightarrow\) n - 4 \(\in\) Ư(36) = {-1; 1; -2; 2; -3; 3; -4; 4; -6; 6; -9; 9; -12; 12; -18; 18; -36; 36}
\(\Rightarrow\) n \(\in\) {-3; 5; 4; 6; -1; 7; 0; 8; -2; 10; -5; 13; -8; 16; -14; 22; -32; 40}
c) 3n + 5 chia hết cho n + 1
\(\Rightarrow\) 3n + 3 + 2 chia hết cho n + 1
\(\Rightarrow\) 3(n + 1) + 2 chia hết cho n + 1
\(\Rightarrow\) 2 chia hết cho n + 1
\(\Rightarrow\) n + 1 \(\in\) Ư(2) = {-1; 1; -2; 2}
\(\Rightarrow\) n \(\in\) {0; 2; -1; 3}
a) 3n + 2 chia hết cho n - 1
⇒⇒ 3n - 3 + 5 chia hết cho n - 1
⇒⇒ 3(n - 1) + 5 chia hết cho n - 1
⇒⇒ 5 chia hết cho n - 1
⇒⇒ n - 1 ∈∈ Ư(5) = {-1; 1; -5; 5}
⇒⇒ n ∈∈ {0; 2; -4; 6}
b) 3n + 24 chia hết cho n - 4
⇒⇒ 3n - 12 + 36 chia hết cho n - 4
⇒⇒ 3(n - 4) + 36 chia hết cho n - 4
⇒⇒ 36 chia hết cho n - 4
⇒⇒ n - 4 ∈∈ Ư(36) = {-1; 1; -2; 2; -3; 3; -4; 4; -6; 6; -9; 9; -12; 12; -18; 18; -36; 36}
⇒⇒ n ∈∈ {-3; 5; 4; 6; -1; 7; 0; 8; -2; 10; -5; 13; -8; 16; -14; 22; -32; 40}
c) 3n + 5 chia hết cho n + 1
⇒ 3n + 3 + 2 chia hết cho n + 1
⇒ 3(n + 1) + 2 chia hết cho n + 1
⇒ 2 chia hết cho n + 1
⇒ n + 1 ∈ Ư(2) = {-1; 1; -2; 2}
⇒ n ∈ {0; 2; -1; 3}
a Tìm số nguyên n sao cho n 2 chia hết cho n 3b Tìm tất cả các số nguyên n biết 6n 1 chia hết cho 3n 1
1, tìm số nguyên n biết
a, n+3 chia hết cho n-1
b, 2n-1 chia hết cho n+2
2, tìm số nguyên n sao cho
a, 3n+2 chia hết cho n-1
b, 3n+24 chia hết cho n-4
c, n^2+5 chia hết cho n+1
Bài 1.Tìm số nguyên n sao cho n+6 chia hết cho n+2
Bài 2. Tìm số nguyên n sao cho 3n+2 chia hết cho n+1
Bài 3. Tìm số nguyên x biết (x-2).(x+3)<0
Bài 4. Tìm số nguyên x biết (4-2x).(x+3)>0
a,Tìm số nguyên n sao cho n+4 chia hết cho n+1
b, Tìm số nguyên n sao cho 3n+4 chia hết cho n+1
Tìm số nguyên n sao cho
a, [3n+2]chia hết cho[n-1]
b,[3n+24]chia hết cho[n-4]
c,[n2+5]chia hết cho[n+1]
a,3n+2 chia hết cho n-1
=>3n-3+5 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Mà 3(n-1) chia hết cho n-1
=>5 chia hết cho n-1
=>n-1\(\in\)Ư(5)={-5,-1,1,5}
=>n\(\in\){-4,0,2,6}
b,3n+24 chia hết cho n-4
=>3n-12+36 chia hết cho n-4
=>3(n-4)+36 chia hết cho n-4
Mà 3(n-4) chia hết cho n-4
=>36 chia hết cho n-4
Bạn làm tiếp nha
c,n2+5 chia hết cho n+1
=>n2-1+6 chia hết cho n+1
=>(n-1).(n+1)+6 chia hết cho n+1
Mà (n-1).(n+1) chia hết cho n+1
=>6 chia hết cho n+1
Bạn tự làm tiếp nha
Tìm số nguyên n sao cho:\
a) 3n + 2 chia hết cho n -1
b)3n-24 chia hết cho n - 4
a)
3n + 2 chia hết cho n - 1
<=> 3n+2 - 3( n - 1) chia hết cho n - 1
<=> 3n + 2 - 3n + 3 chia hết cho n - 1
<=> 5 chia hết cho n - 1
<=> \(n-1\inƯ_5\)
<=> \(n-1\in\left\{1;5;-1;-5\right\}\)
<=> \(n\in\left\{2;6;0;-4\right\}\)
Vậy \(n\in\left\{2;6;0;-4\right\}\)
b)
3n - 24 chia hết cho n - 4
<=> 3(n - 4 ) - (3n - 24 )chia hết cho n - 4
<=> 3n - 12 - 3n +24 chia hết cho n - 4
<=>12 chia hết cho n - 4
<=> \(n-4\inƯ_{12}\)
<=> \(n-4\in\left\{1;2;3;4;6;12;-1;-2;-3;-4;-6;-12\right\}\)
<=>\(n\in\left\{5;;6;7;8;10;16;3;2;1;-1;0;-2;-8\right\}\)
Vậy \(n\in\left\{5;;6;7;8;10;16;3;2;1;-1;0;-2;-8\right\}\)
a) 3n+2 chia hết cho n-1
=> (3n-3)+5 chia hết cho n-1
=> 5 chia hết cho n-1 (vì 3n-3 chia hết cho n-1)
=> n-1\(\in\)Ư(5)={1;-1;5;-5}
Nếu n-1=1=>n=2
Nếu n-1=-1=>n=0
Nếu n-1=5=>n=6
Nếu n-1=-5=>n=-4
b) 3n-24 chia hết cho n-4
=>(3n-12)-12 chia hết cho n-4
=> n-4\(\in\)Ư(12)={1;-1;2;-2;3;-3;4;-4;6;-6;12;12}
Nếu n-4=1=>n=5
Nếu n-4=..........
........
a) \(\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)
Để (3n+2) chia hết cho (n-1) thì (n-1) thuộc ước của 5
Bạn tự liệt kê
b) \(\frac{3n-24}{n-4}=\frac{3\left(n-4\right)-12}{n-4}=3-\frac{12}{n-4}\)
Làm tương tự
Bài 11:a,Tìm các số nguyên x sao cho (4x-3) chia hết cho (x-2) b,Tìm n biết 5n+7 chia hết cho 3n+2 c,Tìm n thuộc Z,biết 3n+2 chia hết cho n-1
11,
a, 4x-3\(\vdots\) x-2 1
x-2\(\vdots\) x-2\(\Rightarrow\) 4(x-2)\(\vdots\) x-2\(\Rightarrow\) 4x-8\(\vdots\) x-2 2
Từ 1 và 2 ta có:
(4x-3)-(4x-8)\(\vdots\) x-2
\(\Rightarrow\) 4x-3-4x+8\(\vdots\) x-2
\(\Rightarrow\) 5 \(\vdots\) x-2
\(\Rightarrow\) x-2\(\in\) Ư(5)
\(\Rightarrow\) x-2\(\in\){-5;-1;1;5}
\(\Rightarrow\) x\(\in\) {-3;1;3;7}
Vậy......
Phần b và c làm tương tự như phần a pn nhé!
a) Tìm số nguyên n sao cho : n + 2 chia hết cho n - 3
b) Tìm tất cả các số nguyên n biết : (6n + 1) chia hết cho (3n - 1)
a) ta có: n+2 chia hết cho n-3
=>(n-3)+5 chia hết cho n-3
Mà n-3 chia hết cho n-3
=>5 chia hết cho n-3
=> n-3 thuộc Ư(5)={1;5;-1;-5}
=> n thuộc {4;8;2;-2}
b) Ta có: 6n+1 chia hết cho 3n-1
=>(6n-2)+2+1 chia hết cho 3n-1
=>2(3n-1) +3 chia hết cho 3n-1
Mà 2(3n-1) chia hết cho 3n-1
=> 3 chia hết cho 3n-1
=> 3n-1 thuộc Ư(3)={1;3;-1;-3}
=> 3n thuộc {2;4;0;-2}
=>n thuộc {2/3 ; 4/3 ; 0 ; -2/3}
Mà n thuộc Z
=>n=0