Cho tam giác ABC vuông cân tại A. Tính độ dài cạnh BC biết A B = A C = 2 d m
A. B C = 4 d m
B. B C = 6 d m
C. B C = 8 d m
D. B C = 8 d m
Cho tam giác ABC vuông cân ở A. Biết AB=AC=4 cm
a, Tính độ dài cạnh BC
b, Từ A kẻ AD vuông góc Bc. C/m D là trung điểm của BC
c, Từ D kẻ DF vuông góc AC. C/m tam giác AFD là tam giác vuông cân
d, Tính độ dài đoạn AD
Bạn vui lòng tự vẽ hình giùm.
a) Tính độ dài BC.
Ta có \(\Delta ABC\)vuông tại A => BC2 = AB2 + AC2 (định lí Pitago) (1)
Mà AB = AC (\(\Delta ABC\)cân tại A) => AB2 = AC2 (2)
Từ (1) và (2) => BC2 = 2AB2
=> BC2 = 2. 42 = 32
=> BC = \(\sqrt{32}\)(vì BC > 0)
b) CM: D là trung điểm của BC
\(\Delta ADB\)vuông và \(\Delta ADC\)vuông có: AB = AC (\(\Delta ABC\)cân tại A)
Cạnh AD chung
=> \(\Delta ADB\)vuông = \(\Delta ADC\)vuông (cạnh huyền - cạnh góc vuông) => DB = DC (hai cạnh tương ứng) => D là trung điểm của BC (đpcm)
* Hình bạn tự vẽ xD *
a) Ta có : Tam giác ABC vuông cân tại A
=> AB2 + AC2 = BC2 ( Đ.lí Pytago )
=> 42 + 42 = BC2
=> 16 + 16 = BC2
=> 32 = BC2
=> BC = \(\sqrt{32}cm\)
b) Vì tam giác ABC là tam giác vuông cân tại A => Góc B = góc C ( hai góc ở đáy )
Xét tam giác vuông ADB và tam giác vuông ADC có :
AB = AC ( gt )
B = C ( cmt )
=> Tam giác vuông ADB = tam giác vuông ADC ( cạnh huyền - góc nhọn )
=> DB = DC ( hai cạnh tương ứng )
=> D là trung điểm của BC
( Đến đây thì mình bí r xD )
Bài 2: Cho tam giác ABC vuông cân tại A. Tính độ dài cạnh BC biết AB = AC = 2dm
A. BC = 4 dm B. BC = √6 dm C. BC = 8dm D. BC = √8 dm
Bài 3: Một tam giác vuông có cạnh huyền bằng 26cm và có độ dài các cạnh góc vuông tỉ lệ với 5 và 12. Tính độ dài các cạnh góc vuông?
A. 10 cm, 22 cm B. 10 cm, 24 cm C. 12 cm, 24 cm D. 15 cm, 24 cm
Bài 4: Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau:
A. 15 cm; 8 cm; 18 cm
B. 21 cm; 20 cm; 29 cm
C. 5 cm; 6 cm; 8 cm
D. 2 cm; 3 cm; 4 cm
Bài 5: Cho tam giác ABC vuông tại A. Kẻ AD ⊥ BC tại D. Biết AB = 7 cm, BD = 4 cm. Khi đó AD có độ dài là:
A. AD = 33 cm
B. AD = 3 cm
C. AD = √33 cm
D. AD = √3 cm
Bài 2: D
Bài 3: B
Bài 4: B
bài 5: C
Cho tam giác ABC cân tại A. Kẻ AM vuông góc với BC (M thuộc BC)
a) Chứng minh tam giác ABM=tam giác ACM
b) Cho biết AB=AC=13cm, AM= 12cm. Tính độ dài cạnh BC
c) Đường thằng vuông góc với AB tại B cắt đường thẳng vuông góc với AC tại C ở D. Chứng minh tam giác DBC cân
Bài 1. Cho tam giác ABC vuông cân tại A. Tính độ dài các cạnh AB và AC. Biết a) BC = 2 b) BC = sqrt(2) c) BC = sqrt(98)
Bài 1. Cho tam giác ABC cân tai A có góc A =70 độ. Tính số đo độ góc C
Bài 2. Cho tam giác ABC vuông tại A, có góc B =60 độ và AB=5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a, Chứng minh tam giác ABD=tam giác EBD
b, Chứng minh tam giác ABE là tam giác đều
c, Tính độ dài cạnh BC
Bài 3. Cho tam giác ABC cân tại A có AB =5cm, BC = 6cm. Kẻ AD vuông góc với BC (D thuộc BC)
a, Tìm các tam giác bằng nhau trong hình
b. Tính ddoojj dài AD
Bài 4. Cho tam giác MNP vuông tại N biết MN=20cm, MP =25cm.
a,Tìm độ dài cạnh NP?
b, Cho tam giascc DEF có DE= 10cm, DF= 24cm, EF= 26cm.Chứng minh tam giác DEF vuông?
Làm ơn giúp mình đi mình đang cần gấp lắm
Cho tam giác ABC vuông tại A có AB=6cm ,AC=8cm a) tính độ dài cạnh ABC và chu vi tam giác ABC b) kẻ AK vuông góc BC biết AK = 4,8 . Tính BK và CK c) đường phân giác của góc B cắt AC tại D vẽ DH vuông góc vs BC (H thuộc BC). C/m m giác ABH = HBD D) c/m DA < DC
Bài 7: a, Cho tam giác ABC vuông tại A có AB 3 AC 4 = và BC = 5. Tính độ dài AB, AC b, Tính độ dài cạnh huyền biết độ dài hai cạnh góc vuông là 6 và 7 c, Tính góc ở đỉnh của tam giác cân biết số đo góc ở đáy là 200 d, Tính số đo góc ở đáy tam giác cân biết số đo góc ở đỉnh là 600
b: Độ dài cạnh huyền là \(\sqrt{6^2+7^2}=\sqrt{85}\left(cm\right)\)
c: Số đo góc ở đỉnh là:
\(180-2\cdot20^0=140^0\)
d: Số đó góc ở đáy là:
\(\dfrac{180^0-60^0}{2}=60^0\)
Giúp giùm câu c,d
Cho tam giác ABC cân tại A. Kẻ am vuông BC tại M.
a) C/m tam giác ABM=ACM và MB=MC
b) Biết AB=20cm: BC=24cm. Tính độ dài đoạn thẳng MB và AM.
c) Kẻ MH vuông AB tại H và MK vuông AC tại K. C/m tam giác AHK cân tại A.
d) tính MH.
a)vì tam giác ABC cân tại A
=>AB=AC và góc ABC=góc ACB
xét tam giác ABM và tam giác ACM có
góc AMB=góc AMC(= 90 độ)
AB=AC
góc ABM=góc ACM
=>tam giác ABM = tam giác ACM (c/h-g/n)
=>MB=MC(2 cạnh tương ứng)
b)ta có BC=24
mà MB=MC
=>M là trung điểm của BC
=>BM=MC=24/2=12 cm
xét tam giác ABM vuông tại M,áp dụng định lý PY-ta go ta có:
\(AB^2=AM^2+BM^2\)
\(AM^2=AB^2-BM^2\)
\(AM^2=20^2-12^2\)
\(AM^2=400-144\)
AM^2=256
=>AM=16 cm
c)vì tam giác ABM = tam giác ACM(cmt)
=>góc BAM=góc CAM(2 góc tương ứng)
xét tam giác HAM và tam giác KAM có
góc AHM = góc AKM(= 90 độ)
cạnh AM chung
góc BAM=góc CAM
=>tam giác HAM = tam giác KAM(c/h-g/n)
=>AH=AK(2 cạnh tương ứng)
=>tam giác AHK cân tại A
d)mình không biết làm phàn này nha
Cho tam giác ABC vuông tại A có góc B=60 độ.Trên cạnh Bc lấy điểm D sao cho BA=BD.Tia phân giác góc B cắt BC tại I
a)C/m tam giác BAD đều
b)C/m tam giác IBC cân
c)C/m D là trung điểm của BC
d) Cho tam giác ABC vuông tại A có BC=26 cm.Tính độ dàu AB và AC biết rằng AB:AC=5:2
(Bạn tự vẽ hình giùm)
a/ Ta có BA = BD (gt)
nên \(\Delta BAD\)cân tại B
=> \(\widehat{BAD}=\frac{180^o-\widehat{B}}{2}\)
=> \(\widehat{BAD}=\frac{180^o-60^o}{2}\)
=> \(\widehat{BAD}=\widehat{BDA}=60^o=\widehat{B}\)
=> \(\Delta BAD\)đều (đpcm)
b/ \(\Delta ABI\)và \(\Delta DBI\)có: AB = DB (gt)
\(\widehat{ABI}=\widehat{IBD}\)(BI là tia phân giác \(\widehat{B}\))
Cạnh BI chung
=> \(\Delta ABI\)= \(\Delta DBI\)(c. g. c) => \(\widehat{A}=\widehat{BDI}=90^o\)(hai cạnh tương ứng)
và AI = DI (hai cạnh tương ứng)
=> BI = IC (quan hệ giữa đường xiên và hình chiếu)
nên \(\Delta BIC\)cân tại I (đpcm)
c/ Ta có \(\Delta BIC\)cân tại I (cmt)
=> Đường cao ID cũng là đường trung tuyến của \(\Delta BIC\)
=> D là trung điểm BC (đpcm)
d/ Ta có \(\Delta ABC\)vuông tại A
=> BC2 = AB2 + AC2 (định lý Pythagore)
=> AB2 + AC2 = 262 = 676
và \(\frac{AB}{AC}=\frac{5}{2}\)=> \(\frac{AB}{5}=\frac{AC}{2}\)=> \(\frac{AB^2}{25}=\frac{AC^2}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{AB^2}{25}=\frac{AC^2}{4}=\frac{AB^2+AC^2}{25+4}=\frac{676}{29}\)
=> \(\hept{\begin{cases}\frac{AB}{5}=\frac{676}{29}\\\frac{AC}{2}=\frac{676}{29}\end{cases}}\)=> \(\hept{\begin{cases}AB=\frac{676}{29}.5\\AC=\frac{676}{29}.2\end{cases}}\)=> \(\hept{\begin{cases}AB=\frac{3380}{29}\left(cm\right)\\AC=\frac{1352}{29}\left(cm\right)\end{cases}}\)
Cho tam giác ABC cân tại A vẽ đường phân giác H. Gọi D là hình chiếu của điểm B trên cạnh BC. BD cắt AH tại K
a) Biết AB= 5cm ; BC= 6cm . Tính độ dài AH và HB
b) C/m CK vuông góc với AB
a)Xét t/giác ABC cân tại A có
AH là đg pg của t/giác ABC
suy ra AH đồng thời là đường cao , đường trung tuyến của t/giác ABC
do đó AH vuông góc với BC
Ta có BH=\(\dfrac{1}{2}\)BC (vì H là trg điểm của BC do AH là đg trug tuyến)
BH=\(\dfrac{1}{2}\)6
BH=3 cm
Vì t/giác AHB vuông ở H
suy ra \(AH^2\)+\(HB^2\)=\(AB^2\)( ĐL PY TA GO)
\(AH^2\)+\(3^2\)=\(5^2\)
\(AH^2\)+9=25
\(AH^2\)=16
AH=4 cm
b)Xét t/giác ABC có BD vuông góc với AC tại D
AH vuông góc với BC tại H
Mà BD cắt AH ở K
Do đo K là trọng tâm của t/giác ABC
suy ra CK vuông góc với AB