Những câu hỏi liên quan
B4
Xem chi tiết
NT
5 tháng 4 2022 lúc 13:43

a: \(f\left(x\right)=x^4-x^3+2x^2+3x\)

\(g\left(x\right)=x^4+x^3+2x^2\)

b: Hệ số tự do của f(x) là 0 và g(x) là 0

Hệ số cao nhất của f(x) là 1

Hệ số cao nhất của g(x) là 1

c: Bậc của f(x) là 4

Bậc của g(x) là 4

Bình luận (0)
TP
Xem chi tiết
TP
8 tháng 5 2022 lúc 13:15

giúp mình pls khocroi

Bình luận (1)
PA
Xem chi tiết
TP
Xem chi tiết
TP
8 tháng 5 2022 lúc 8:50

giúp mình đi mai mình còn phải nộp bài cho cô khocroi

Bình luận (1)
H24
8 tháng 5 2022 lúc 9:34

Viết lại đề được kh bạn ?

Bình luận (0)
HT
Xem chi tiết
DH
23 tháng 5 2021 lúc 0:22

1) \(\left(x^2-4x+3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)

Với \(x=1\)\(0=-1f\left(0\right)\Leftrightarrow f\left(0\right)=0\)do đó \(0\)là một nghiệm của đa thức \(f\left(x\right)\).

Tương tự xét \(x=2,x=3\)có thêm hai nghiệm nữa là \(3\)và \(2\).

Bình luận (0)
 Khách vãng lai đã xóa
DH
23 tháng 5 2021 lúc 0:24

2) \(f\left(2\right)=4a-2+b=0\Leftrightarrow4a+b=2\)

Tổng hệ số cao nhất và hệ số tự do là \(a+b\)suy ra \(a+b=-7\).

Ta có hệ: 

\(\hept{\begin{cases}4a+b=2\\a+b=-7\end{cases}}\Leftrightarrow\hept{\begin{cases}3a=9\\b=-7-a\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=-10\end{cases}}\).

Bình luận (0)
 Khách vãng lai đã xóa
CH
Xem chi tiết
NT
2 tháng 7 2023 lúc 8:16

1:

a: f(x)=2x^4+2x^3+2x^2+5x+6

g(x)=x^4-2x^3-x^2-5x+3

c: h(x)=2x^4+2x^3+2x^2+5x+6+x^4-2x^3-x^2-5x+3=3x^4+x^2+9

K(x)=f(x)-2g(x)-4x^2

=2x^4+2x^3+2x^2+5x+6-2x^4+4x^3+2x^2+10x-6-4x^2

=6x^3+15x

c: K(x)=0

=>6x^3+15x=0

=>3x(2x^2+5)=0

=>x=0

d: H(x)=3x^4+x^2+9>=9

Dấu = xảy ra khi x=0

Bình luận (0)
NM
Xem chi tiết
YN
24 tháng 5 2021 lúc 19:59

1. Cho đa thức f (x) thỏa mãn ( x\(^2\) - 4x + 3) .f ( x + 1 ) = (x - 2).f ( x - 1 ). Chứng tỏ đa thức f (x) có ít nhất 3 nghiệm.

\(\left(x^2-4x+3\right).f\left(x+1\right)=\left(x-2\right).f\left(x-1\right)\)     

\(\text{* Thay}\)\(x=2\)\(,\)\(\text{ta có:}\)

\(\left(2^2-4.2+3\right)f\left(2+1\right)=\left(2-2\right)f\left(2-1\right)\)

\(\rightarrow\left(4-8+3\right)f\left(3\right)=0.f\left(1\right)\)

\(\rightarrow\left(-1\right).f\left(3\right)=0\)

\(\rightarrow f\left(3\right)=0\)

\(\rightarrow x=3\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)

\(\text{* Thay}\)\(x=1\)\(,\)\(\text{ta có:}\)

\(\left(1^2-4.1+3\right)f\left(1+1\right)=\left(1-2\right).f\left(1-1\right)\)

\(\rightarrow\left(1-4+3\right).f\left(2\right)=-1.f\left(0\right)\)

\(\rightarrow0.f\left(2\right)=-1.f\left(0\right)\)

\(\rightarrow0=\left(-1\right).f\left(0\right)\)

\(\rightarrow f\left(0\right)=0\)

\(\rightarrow x=0\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)

\(\text{* Thay}\)\(x=3\)\(,\)\(\text{ta có:}\)

\(\left(3^2-4.3+3\right).f\left(3+1\right)=\left(3-2\right).f\left(3-1\right)\)

\(\rightarrow\left(9-12+3\right).f\left(4\right)=1.f\left(2\right)\)

\(\rightarrow0.f\left(4\right)=1.f\left(2\right)\)

\(\rightarrow0=1.f\left(2\right)\)

\(\rightarrow f\left(2\right)=0\)

\(\rightarrow x=2\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)

\(\text{Vậy ...}\)

Bình luận (0)
 Khách vãng lai đã xóa
LB
Xem chi tiết
AD
Xem chi tiết
MH
18 tháng 3 2022 lúc 16:54

a) Gọi đa thức cần tìm là \(f\left(x\right)=ax+b\)

Do \(f\left(-1\right)=2\) nên thay \(x=-1\) ta có \(-a+b=2\), hay \(b=a+2\)

Do \(f\left(3\right)=-1\) nên thay \(x=3\) ta có \(3a+b=-1\), suy ra \(3a+a+2=-1\)

\(\Rightarrow4a=-3\Rightarrow a=-\dfrac{3}{4}\Rightarrow b=\dfrac{5}{4}\)

Vậy đa thức cần tìm là \(f\left(x\right)=-\dfrac{3}{4}x+\dfrac{5}{4}\)

b) Gọi đa thức cần tìm là \(g\left(x\right)=5x^2+bx+c\)

Do \(g\left(2\right)=5\) nên thay \(x=2\) ta có \(20+2b+c=5\Rightarrow2b+c=-15\)

\(\Rightarrow c=-15-2b\)

Do \(g\left(1\right)=-1\) nên thay \(x=1\) ta có \(5+b+c=-1\Rightarrow b+c=-6\)

\(\Rightarrow b-2b-15=-6\Rightarrow b=-9\Rightarrow c=3\)

Vậy đa thức cần tìm là \(g\left(x\right)=5x^2-9x+3\)

Bình luận (0)