Cho n ∈ N. Chứng tỏ rằng phân số
14 n + 3 21 n + 5 là phân số tối giản
chứng minh rằng 21.n+4/14.n+3 là phân số tối giản (n thuộc N) ?
gọi d là ƯCLN ( 21n + 4 ; 14n + 3 )
\(\Rightarrow\)21n + 4 \(⋮\)d \(\Rightarrow\)2 . ( 21n + 4 ) \(⋮\)d \(\Rightarrow\)42n + 8 \(⋮\)d ( 1 )
\(\Rightarrow\)14n + 3 \(⋮\)d \(\Rightarrow\)3 . ( 14n + 3 ) \(⋮\)d \(\Rightarrow\)42n + 9 \(⋮\)d ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)( 42n + 9 ) - ( 42n + 8 ) = 1 \(⋮\)d
\(\Rightarrow\)d = 1 mà ƯCLN ( 21n + 4 ; 14n + 3 ) = d nên phân số \(\frac{21n+4}{14n+3}\)là phân số tối giản
Cho n thuộc N, Chứng tỏ rằng phân số 14n+3/21n+5 là phân số tối giản.
Đặt \(\left(14n+3,21n+5\right)=d\).
Suy ra
\(\hept{\begin{cases}14n+3⋮d\\21n+5⋮d\end{cases}}\Rightarrow2\left(21n+5\right)-3\left(14n+3\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Cho n thuộc N. Chứng tỏ rằng phân số: 14n+3/21n+5 là phân số tối giản
Gọi d = ƯCLN ( 14n + 3 , 21n + 5 )
Xét hiệu :
\(\left(21n+5\right)-\left(14n+3\right)⋮d\)
\(2\left(21n+5\right)-3\left(14+3\right)⋮d\)
\(42n+10-42n-9⋮d\)
\(10-9⋮d\)
\(1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)\)
\(\RightarrowƯ\left(1\right)=1\Rightarrow d=1\)
Vậy....
#Louis
Chứng tỏ rằng với mọi số tự nhiên n khác 0 thì các phân số sau là tối giản
5n+14/n+3
3n-2/4n-3
a: Gọi a=UCLN(5n+14;n+3)
\(\Leftrightarrow5n+14-5n-15⋮a\)
\(\Leftrightarrow-1⋮a\)
hay a=1
=>5n+14/n+3 là phân số tối giản
b: Gọi d=UCLN(3n-2;4n-3)
\(\Leftrightarrow4\left(3n-2\right)-3\left(4n-3\right)⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>3n-2/4n-3 là phân số tối giản
a, Tìm phân số a/b biết a/b = 21/35 và ƯCLN(a;b) =30
b, Chứng minh rằng các phân số sau là phân số tối giản với mọi n thuộc N
1, 14n+3/21n+4 2,8n+3/18n+3
c, Chứng tỏ rằng phân số (n+1)(n+2)(n+3)....(n+n)/2^n
Bài 1:
Chứng tỏ rằng mọi phân số có dạng n + 1 / 2n + 3 (n thuộc N) đều là phân số tối giản
Bài 2:
Chứng tỏ rằng mọi phân số có dạng 2n + 3 / 3n + 5 (n thuộc N) đều là phân số tối giản
Bài 3:
Cho góc mOx , tia Om nằm giữa hai tia Ox và Oy. Hãy chứng tỏ rằng:
a) Các góc mOx và mOy là các góc nhọn
b) Tia Ox không nằm giữa hai tia Om và Oy
Bài 1 : Đặt \(d=Ư\left(n+1;2n+3\right)\)
Từ đó \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Leftrightarrow}}2n+3-\left(2n+2\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy mọi phân số dạng \(\frac{n+1}{2n+3}\left(n\inℕ\right)\) đều là phân số tối giản
Bài 2 : Đặt \(d=Ư\left(2n+3;3n+5\right)\)
Từ đó \(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}\Leftrightarrow}6n+10-\left(6n-9\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1}\)
Vậy mọi phân số dạng \(\frac{2n+3}{3n+5}\left(n\inℕ\right)\) đều là phân số tối giản.
Bài 1:
Chứng tỏ rằng mọi phân số có dạng n + 1 / 2n + 3 (n thuộc N) đều là phân số tối giản
Bài 2:
Chứng tỏ rằng mọi phân số có dạng 2n + 3 / 3n + 5 (n thuộc N) đều là phân số tối giản
Bài 3:
Cho góc mOx , tia Om nằm giữa hai tia Ox và Oy. Hãy chứng tỏ rằng:
a) Các góc mOx và mOy là các góc nhọn
b) Tia Ox không nằm giữa hai tia Om và Oy
Cho n ∈ N. Chứng tỏ rằng phân số
14 n + 3 21 n + 5 là phân số tối giản
Đặt d = ƯCLN( 14n + 3, 21n + 5 ) ( d ∈ N* )
Ta có: 14n + 3 ⋮ d và 21n + 5 ⋮ d
⇒ 3( 14n + 3 ) ⋮ d và 2( 21n + 5 ) ⋮ d ⇒ 42n + 9 ⋮ d và 42n + 10 ⋮ d
⇒ ( 42n + 9 ) – ( 42n + 10 ) ⋮ d ⇒ 1 ⋮ d . Do đó d = 1
Vậy 14 n + 3 21 n + 5 là phân số tối giản
Cho n ∈ N . Chứng tỏ rằng phân số 14 n + 3 21 n + 5 là phân số tối giản