Thực hiện phép chia: 2 x 4 y - 6 x 2 y 7 + 4 x 5 : 2 x 2
A. x 2 y - 3 y 7 + 2 x 3
B. x y - 3 y 7 + 2 x 3
C. x 2 y + 3 y 5 + 2 x 3
D. x 2 y - 3 y 7 + x 2
Thực hiện phép chia:
[7(x-y)5+6(y-x)4-2(x-y)3+(y-x)2 ]:(x-y)2
Có:
\(\left[7\left(x-y\right)^5+6\left(y-x\right)^4-2\left(x-y\right)^3+\left(y-x\right)^2\right]:\left(x-y\right)^2\)
\(=\left[7\left(x-y\right)^5+6\left(x-y\right)^4-2\left(x-y\right)^3+\left(x-y\right)^2\right]:\left(x-y\right)^2\)
\(=\left[7\left(x-y\right)^5:\left(x-y\right)^2\right]+\left[6\left(x-y\right)^4:\left(x-y\right)^2\right]-\left[2\left(x-y\right)^3:\left(x-y\right)^2\right]+\left(x-y\right)^2:\left(x-y\right)^2\)
\(=7\left(x-y\right)^3+6\left(x-y\right)^2-2\left(x-y\right)+1\)
Thực hiện phép chia \(8{x^4}{y^5}{z^3}\) cho \(2{x^3}{y^4}z\).
`8x^4y^5z^3 : 2x^3y^4z`
`= 4xyz^2`.
Thực hiện phép tính :
Thực hiện phép tính :
5.x^2(x-y+1)+(x^2-1)(x+y)
Bài 2:
1: \(A=\left(x+2\right)\left(x^2-2x+4\right)+2\left(x+1\right)\left(1-x\right)\)
\(=\left(x+2\right)\left(x^2-x\cdot2+2^2\right)-2\left(x+1\right)\left(x-1\right)\)
\(=x^3+2^3-2\left(x^2-1\right)\)
\(=x^3+8-2x^2+2=x^3-2x^2+10\)
\(B=\left(2x-y\right)^2-2\left(4x^2-y^2\right)+\left(2x+y\right)^2+4\left(y+2\right)\)
\(=\left(2x-y\right)^2-2\cdot\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)^2+4\left(y+2\right)\)
\(=\left(2x-y-2x-y\right)^2+4\left(y+2\right)\)
\(=\left(-2y\right)^2+4\left(y+2\right)\)
\(=4y^2+4y+8\)
2: Khi x=2 thì \(A=2^3-2\cdot2^2+10=8-8+10=10\)
3: \(B=4y^2+4y+8\)
\(=4y^2+4y+1+7\)
\(=\left(2y+1\right)^2+7>=7>0\forall y\)
=>B luôn dương với mọi y
Bài 1:
5: \(x^2\left(x-y+1\right)+\left(x^2-1\right)\left(x+y\right)\)
\(=x^3-x^2y+x^2+x^3+x^2y-x-y\)
\(=2x^3-x+x^2-y\)
6: \(\left(3x-5\right)\left(2x+11\right)-6\left(x+7\right)^2\)
\(=6x^2+33x-10x-55-6\left(x^2+14x+49\right)\)
\(=6x^2+23x-55-6x^2-84x-294\)
=-61x-349
Thực hiện các phép chia phân thức sau:
a) \(\dfrac{{5x}}{{4{y^3}}}:\left( { - \dfrac{{{x^4}}}{{20y}}} \right)\)
b) \(\dfrac{{{x^2} - 16}}{{x + 4}} :\dfrac{{2x - 8}}{x}\)
c) \(\dfrac{{2x + 6}}{{{x^3} - 8}}:\dfrac{{{{\left( {x + 3} \right)}^3}}}{{2x - 4}}\)
\(a,=\dfrac{5x}{4y^3}\times\left(\dfrac{-20y}{x^4}\right)=\dfrac{-100xy}{4x^4y^3}=\dfrac{-25}{x^3y^2}\\ b,=\dfrac{\left(x-4\right)\left(x+4\right)}{\left(x+4\right)}\times\dfrac{x}{2\left(x-4\right)}=\dfrac{x}{2}\)
\(c,=\dfrac{2\left(x+3\right)}{\left(x-2\right)\left(x^2+2x+4\right)}\times\dfrac{2\left(x-2\right)}{\left(x+3\right)^3}=\dfrac{4}{\left(x+3\right)^2.\left(x^2+2x+4\right)}\)
a) \(\dfrac{5x}{4y^3}:\left(-\dfrac{x^4}{20y}\right)=\dfrac{5x}{4y^3}\cdot\left(-\dfrac{20y}{x^4}\right)=\dfrac{5\cdot-5}{y^2\cdot x^3}=\dfrac{-25}{x^3y^2}\)
b) \(\dfrac{x^2-16}{x+4}:\dfrac{2x-8}{x}=\left(x-4\right)\cdot\dfrac{x}{2\left(x-4\right)}=\dfrac{x}{2}\)
c) \(\dfrac{2x+6}{x^3-8}:\dfrac{\left(x+3\right)^3}{2x-4}=\dfrac{2\left(x+3\right)}{\left(x-2\right)\left(x^2+2x+4\right)}\cdot\dfrac{2\left(x-2\right)}{\left(x+3\right)^3}=\dfrac{4}{\left(x^2+2x+4\right)\left(x+3\right)^2}\)
Thực hiện mỗi phép tính sau:
a) \({x^2} + \dfrac{1}{4}{x^2} - 5{x^2}\);
b) \({y^4} + 6{y^4} - \dfrac{2}{5}{y^4}\).
a) \({x^2} + \dfrac{1}{4}{x^2} - 5{x^2} = (1 + \dfrac{1}{4} - 5){x^2} = - \dfrac{{15}}{4}{x^2}\);
b) \({y^4} + 6{y^4} - \dfrac{2}{5}{y^4} = (1 + 6 - \dfrac{2}{5}){y^4} = \dfrac{{33}}{5}{y^4}\).
( x - y )^7: ( y - x )^6
\(\left(x-y\right)^7:\left(y-x\right)^6\left(dk:x\ne y\right)\)
\(=\left(x-y\right)^7:\left(x-y\right)^6\)
\(=x-y\)
Bài 3:
3: \(6x\left(x-y\right)-9y^2+9xy\)
\(=6x\left(x-y\right)+9xy-9y^2\)
\(=6x\left(x-y\right)+9y\left(x-y\right)\)
\(=\left(x-y\right)\left(6x+9y\right)\)
\(=3\left(2x+3y\right)\left(x-y\right)\)
Bài 4:
a.Phân tích đa thức sau thành nhân tử:
3xy(x-y)+5x(x-y)
b. Thực hiện phép chia đa thức 2x2+3x2+x+6 cho đa thức x+2
Thực hiện phép nhân, phép chia sau:
1/ 3a{ 2a^2 - ab }
2/ { 4 - 7b^2 }. { 2a + 5b }
Phân tích đa thức thành nhân tử:
2x^2 - 6x + xy - 3y
Tính giá trị biểu thức Q = 4x^2 - 4xy +4y^2 tại x = 3/2, y=1/3
Rút gọn phân thức A: A = 4 - 4x + x^2/3x - 6
Thực hiện phép tính:
{ 1/x+1 + 2x/1-x^2}. { 1/x-1 }
Giải giúp mình với !
Bài 1:
\(3a.\left(2a^2-ab\right)=6a^3-3a^2b\)
\(\left(4-7b^2\right).\left(2a+5b\right)=8a+20b-14ab^2-35b^3\)
Bài 2:
\(2x^2-6x+xy-3y=2x.\left(x-3\right)+y.\left(x-3\right)=\left(x-3\right).\left(2x+y\right)\)
Bài 3: Tại x = 3/2, y =1/3 thì Q = 67/9
Bài 4:
\(\left(\frac{1}{x+1}+\frac{2x}{1-x^2}\right).\left(\frac{1}{x-1}\right)\) \(\frac{1}{\left(x+1\right).\left(x-1\right)}+\frac{2x}{\left(1-x^2\right).\left(x-1\right)}=\frac{x-1}{\left(x+1\right).\left(x-1\right)^2}+\frac{-2x}{\left(x-1\right)^2.\left(x+1\right)}\)
= \(\frac{x-1-2x}{\left(x+1\right).\left(x-1\right)^2}=\frac{-\left(x+1\right)}{\left(x+1\right).\left(x-1\right)^2}=\frac{-1}{\left(x-1\right)^2}\)
Thực hiện phép chia P(x) = \((6{x^2} + 4x)\) cho Q(x) = 2x.
\((6{x^2} + 4x):2x = (6{x^2}:2x) + (4x:2x)\)
\( = 3x + 2\)