Chứng minh rằng A = 8 + 8^2 + 8^3 + 8^4 + ... + 8^2021 + 8^2022 chia hết cho 9
Chứng tỏ rằng:
\(a)M = {32^{2023}} - {32^{2021}}\) chia hết cho 31
b) \(N = {7^6} + {2.7^3} + {8^{2022}} + 1\) chia hết cho 8
\(\begin{array}{l}a)M = {32^{2023}} - {32^{2021}}\\M = {32^{2021}}\left( {{{32}^2} - 1} \right)\\M = {32^{2021}}.1023\end{array}\)
Vì \(1023 \vdots 31\) nên \(M = \left( {{{32}^{2021}}.1023} \right) \vdots 31\)
Vậy M chia hết cho 31.
\(\begin{array}{l}b)N = {7^6} + {2.7^3} + {8^{2022}} + 1\\N = {\left( {{7^3}} \right)^2} + {2.7^3} + 1 + {8^{2022}}\\N = {\left( {{7^3} + 1} \right)^2} + {8^{2022}}\\N = {\left( {344} \right)^2} + {8^{2022}}\\N = {\left( {8.43} \right)^2} + {8^{2022}}\\N = {8^2}\left( {{{43}^2} + {8^{2020}}} \right)\end{array}\)
Vì \({8^2} \vdots 8\) suy ra \(N = {8^2}\left( {{{43}^2} + {8^{2020}}} \right) \vdots 8\)
Vậy N chia hết cho 8
Bài 2 : Chứng minh rằng
a) 2^0 + 2^1 + 2^2 + 2^3 + 2^4 ko chia hết cho 3
b) 8^0 + 8^1 + ... + 8^9 + 8^10 ko chia hết cho 9
A=7^1+7^2+7^3+7^4+.....+7^2020
a) Thu gọn A
b) Chứng minh rằng 6a+7=7^2021
c) Chứng minh rằng Achia hết cho 8
d) Chứng minh rằng (a+7^2021) chia hết cho 8
e) so sánh 6a+7 với B=343^12345
bài 5: chứng minh rằng. a)36^36-9^10 chia hết cho 45. b)8^10-8^9-8^8 chia hết cho 55. c)5^5-5^4+5^3 chia hết cho 7. d)7^6+7^5-7^4 chia hết cho 12. e)24^54.54^24.10^2 chia hết cho 72^63. g)81^7-27^9-9^13 chia hết cho 45. h)3^n+3+3^n+1+2^n+3+2^n+2 chia hết cho 6. i) (2^10+2^11+2^12):7 là một số tự nhiên
b: \(8^{10}-8^9-8^8=8^8\left(8^2-8-1\right)=8^8\cdot55⋮55\)
c: 5^5-5^4+5^3
=5^3(5^2-5+1)
=5^3*21 chia hết cho 7
e:
72^63=(3^2*2^3)^63=3^126*2^189
\(24^{54}\cdot54^{24}\cdot10^2=2^{162}\cdot3^{54}\cdot3^{72}\cdot2^{24}\cdot2^2\cdot5^2\)
\(=2^{188}\cdot3^{136}\cdot5^2\) chia hết cho 3^126*2^189
=>ĐPCM
g: \(=\left(3^4\right)^7-\left(3^3\right)^9-3^{26}\)
\(=3^{26}\left(3^2-3-1\right)=5\cdot3^{26}=5\cdot9\cdot3^{24}⋮5\cdot9=45\)
1) Tìm x thuộc N để A, B chia hết cho 2 :
A = 18 + 8 + 12 + x
B = 76 + 9 + x
2) Cho a thuộc N biết a Chia hết cho 12 dư 8. Hỏi a có chia hết cho 4 và 6 không ?
3) Chứng minh rằng :
a, 10^28 + 8 chia hết cho 72
b, 8^8 + 2^20 chia hết cho 1
6) Cho A= 2 + 2^2 + 2^3 + ........ + 2^60
Chứng minh A chia hết cho 3, 7, 15
Hãy chứng minh rằng
A= 1+8+8^2+8^3+8^4+....+8^60
Hãy chứng minh tổng đó chia hết cho 72
chứng minh :
A = 1+3+4+5+6+7+8+9+....+999999 chia hết cho 96
B = 8*8*8*8*8*8*....*8*9 chia hết cho 72
C = 80+90+100+110+....+9000 chia hết cho 3
D =(72+89)*(72+90)*(72+91)*.....*(72+300) chia hết cho 8
E = -2+-3+-4+-5+-6+-7+-8+-9+.......+-98 chia hết cho 0
chứng minh rằng
a) 20+21+22+23+24 ko chia hết cho 3
b)80+81+...+89+810 ko chia hết cho 9
a)20+21+22+23+24=1+2+4+8+16=3+4+8+16=7+8+16=15+16=31 Không chia hết cho 3
=>đpcm
b)Đặt A=1+81+...+810
8A=8+82+...+811
8A+1=1+8+82+...+811=A+811
8A-A=811-1
7A=811-1
A=(811-1)/7 Không chia hết cho 9
=>đpcm
Bạn xem ở đây này Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
chứng minh rằng
a)20+21+22+23+24 ko chia hết cho 3
b)80+81+...+89+810 ko chia hết cho 9
a, =2^0+2(1+2)+2^3(1+2)
=2^0+2.3+2^3.3
=2^0+3.(2+2^3)
=2^0+3.(2+2^3) vậy đương nhiên nó ko chia hết cho 3
câu b cũng thế