Những câu hỏi liên quan
TT
Xem chi tiết
DH
Xem chi tiết
DH
Xem chi tiết
H24
29 tháng 4 2019 lúc 22:05

Ta có : \(\frac{2014a^2+b^2+c^2}{a^2}=\frac{a^2+2014b^2+c^2}{b^2}=\frac{a^2+b^2+2014c^2}{c^2}\)

\(\Rightarrow\) \(2014+\frac{b^2+c^2}{a^2}=2014+\frac{a^2+c^2}{b^2}=2014+\frac{a^2+b^2}{c^2}\)

\(\Rightarrow\) \(\frac{b^2+c^2}{a^2}=\frac{a^2+c^2}{b^2}=\frac{a^2+b^2}{c^2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{b^2+c^2}{a^2}=\frac{a^2+c^2}{b^2}=\frac{a^2+b^2}{c^2}=\frac{2\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=2\) (Vì \(a^2+b^2+c^2\ne0\))

Suy ra: \(\frac{b^2}{a^2}+\frac{c^2}{a^2}=\frac{a^2}{b^2}+\frac{c^2}{b^2}=\frac{a^2}{c^2}+\frac{b^2}{c^2}=2\)

\(\Rightarrow\frac{b^2}{a^2}+\frac{c^2}{a^2}+\frac{a^2}{b^2}+\frac{c^2}{b^2}+\frac{a^2}{c^2}+\frac{b^2}{c^2}=2+2+2=6\)

\(\Rightarrow\) \(\frac{a^2}{c^2}+\frac{b^2}{a^2}+\frac{c^2}{b^2}=\frac{6}{2}=3\)

Lại có: \(P=\)\(\frac{2015a^2+b^2}{c^2}+\frac{2015a^2+c^2}{b^2}+\frac{2015b^2+c^2}{a^2}\)

\(=2015\left(\frac{a^2}{c^2}+\frac{b^2}{a^2}+\frac{c^2}{b^2}\right)+\left(\frac{b^2}{c^2}+\frac{c^2}{a^2}+\frac{a^2}{b^2}\right)\)

\(=\left(2015+1\right)\left(\frac{a^2}{c^2}+\frac{b^2}{a^2}+\frac{c^2}{b^2}\right)\)

\(=2016\left(\frac{a^2}{c^2}+\frac{b^2}{a^2}+\frac{c^2}{b^2}\right)\)

\(=2016.3=6048\)

Vậy \(P=6048\)

Bình luận (0)
NN
Xem chi tiết
LM
Xem chi tiết
NT
Xem chi tiết
DT
Xem chi tiết
NH
Xem chi tiết
NP
Xem chi tiết
PT
15 tháng 5 2015 lúc 20:31

Ủa tui tưởng bài này ỏ lớp 7 cơ ch71, lớp 6 có rùi sao

 

Bình luận (0)
TL
15 tháng 5 2015 lúc 20:49

từ đề bài => \(2014+\frac{b^2+c^2}{a^2}=\frac{a^2+c^2}{b^2}+2014=\frac{a^2+b^2}{c^2}+2014\)

=> \(\frac{b^2+c^2}{a^2}=\frac{a^2+c^2}{b^2}=\frac{a^2+b^2}{c^2}\). theo tính chất dãy tỉ số bằng nhau

=> \(\frac{b^2+c^2}{a^2}=\frac{a^2+c^2}{b^2}=\frac{a^2+b^2}{c^2}=\frac{b^2+c^2+a^2+c^2+a^2+b^2}{a^2+b^2+c^2}=\frac{2.\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=2\)

=> \(\frac{b^2}{a^2}+\frac{c^2}{a^2}=\frac{a^2}{b^2}+\frac{c^2}{b^2}=\frac{a^2}{c^2}+\frac{b^2}{c^2}=2\)=>\(\frac{b^2}{a^2}+\frac{c^2}{a^2}+\frac{a^2}{b^2}+\frac{c^2}{b^2}+\frac{a^2}{c^2}+\frac{b^2}{c^2}=2+2+2=6\) 

=> \(\frac{b^2}{a^2}+\frac{c^2}{a^2}+\frac{c^2}{b^2}=6:2=3\)\(P=2015.\left(\frac{a^2}{c^2}+\frac{b^2}{a^2}+\frac{c^2}{b^2}\right)+\left(\frac{b^2}{c^2}+\frac{c^2}{a^2}+\frac{a^2}{b^2}\right)=2016.\left(\frac{a^2}{c^2}+\frac{b^2}{a^2}+\frac{c^2}{b^2}\right)=2016.3=6048\)

Bình luận (0)
TS
Xem chi tiết
NH
8 tháng 5 2017 lúc 10:00

Làm ơn viết cái đề rõ hơn dc ko vậy?

Bình luận (0)
HL
8 tháng 5 2017 lúc 11:55

-_- Viết ra đi cậu. Khó nhìn chết được.

Bình luận (0)
TS
8 tháng 5 2017 lúc 15:13

\(2014a^2+b^2+c^2\) / \(a^2\) = \(a^2+2014b^2+c^2\) /b\(^2\) = \(a^2+b^2+2014c^2\) /c\(^2\)

P = \(2015a^2+b^2\) /c\(^2\) + \(2015b^2\) +\(c^2\) / a\(^2\) + 2015\(c^2+a^2\)/b\(^2\)

Bình luận (0)