Cho a, b, c là các số dương. Chứng minh rằng a + b c + b + c a + c + a b ≥ 6
Cho a, b, c là các số nguyên dương. Chứng minh rằng: M=a/a+b + b/b+c + c/c+a không là số nguyên
ta cần chứng minh nó lớn hơn 1 và nhỏ hơn 2
Do a;b;c và d là các số nguyên dương =>
a + b + c < a + b + c + d
a + b + d < a + b + c + d
a + c + d < a + b + c + d
b + c + d < a + b + c + d
=> a/(a + b + c) > a/(a + b + c + d) (1)
b/(a + b + d) > b/(a + b + c + d) (2)
c/(b + c + d) > c/(a + b + c + d) (3)
d/(a + c + d) > d/(a + b + c + d) (4)
Từ (1);(2);(3) và (4)
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > a/(a + b + c + d) + b/(a + b + c + d) + c/(a + b + c + d) + d/(a + b + c + d)
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > (a + b + c + d)/(a + b + c + d)
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > 1
=> B > 1 (*)
Ta có: (a + b + c)(a + d) - a(a + b + c + d)
= a² + ad + ab + bd + ac + cd - (a² + ab + ac + ad)
= a² + ad + ab + bd + ac + cd - a² - ab - ac - ad
= bd + cd
Do a;b;c và d là số nguyên dương
=> bd + cd > 0
=> (a + b + c)(a + d) - a(a + b + c + d) > 0
=> (a + b + c)(a + d) > a(a + b + c + d)
=> (a + d)/(a + b + c + d) > a/(a + b + c) (5)
Chứng minh tương tự ta được:
(b + c)/(a + b + c + d) > b/(a + b + d) (6)
(a + c)/(a + b + c + d) > c/(b + c + d) (7)
(b + d)/(a + b + c + d) > d/(a + c + d) (8)
Cộng vế với vế của (5);(6);(7) và (8) ta được:
(a + d)/(a + b + c + d) + (b + c)/(a + b + c + d) + (a + c)/(a + b + c + d) + (b + d)/(a + b + c + d) > a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d)
=> (a + d + b + c + a + c + b + d)/(a + b + c + d) > B
=> 2(a + b + c + d)/(a + b + c + d) > B
=> 2 > B (*)(*)
Từ (*) và (*)(*)
=> 1 < B < 2
=> B không phải là số nguyên
Ta có: a/a+b <a/a+b+c (1)
b/b+c <b/a+b+c (2)
c/c+a <c/a+b+c (3)
Từ (1),(2),(3) => a/a+b + b/b+c + c/c+a > a/a+b+c + b/a+b+c + c/a+b+c
= a+b+c/a+b+c
=1
VẬY : M>1
Ta có :
a/a+b < a+c/a+b+c (1)
b/b+c < b+a/a+b+c (2)
c/c+a < c+b/a+b+c (3)
Từ (1),(2),(3) => a/a+b + b/b+c + c/c+a < a+c/a+b+c + b+a/a+b+c + c+a/a+b+c
= 2.(a+b+c)/a+b+c
= 2
=> 1<M<2
=> M không phải là số nguyên
Cho a, b, c là các số nguyên dương thoả mãn (a, b, c) = 1 và c = ab/a−b. Chứng minh rằng a−b là số chính phương
cho a,b,c là các số dương. chứng minh rằng:
(a+b)/c+(b+c)/a+(c+a)/b >=6
ta co(:a+b)/c+(b+c)/a+(a+c)/b=a/c+c/a+a/b+b...
theo bdt cauchy,ta co
a/c+c/a>=2
b/c+c/b>=2
a/b+b/a>=2
vay a/c+a/b+b/a+b/c+c/a+c/b>=6(dpcm)
dau "="say ra khi a=b=c=1
cho a b c là các số thực dương chứng minh rằng:(a+b)(1/a+1/b)>=4
Ta có \(a+b\ge2\sqrt{ab}\) (Cô-si 2 số) và \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{ab}}\) (Cô-si 2 số)
Nhân theo vế 2 BĐT trên, ta được \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2\sqrt{ab}.2\sqrt{\dfrac{1}{ab}}=4\).
ĐTXR \(\Leftrightarrow a=b\)
Cho a, b,, c, d là các số nguyên dương thỏa mãn b( a + c) = ac. Chứng minh rằng: a. b + 2( a + c) luôn là hợp số;
b. c + 2a luôn là hợp số.
Cho a, b, c là các số thực dương. Chứng minh rằng:
\(\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}\ge1\)
\(\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}=\dfrac{a^2}{ab+2ac}+\dfrac{b^2}{bc+2ab}+\dfrac{c^2}{ac+2bc}\)
áp dụng BDT CAUCHY SCHAWRZ
\(=>\dfrac{a^2}{ab+2ac}+\dfrac{b^2}{bc+2ab}+\dfrac{c^2}{ac+2bc}\ge\dfrac{\left(a+b+c\right)^2}{ab+bc+ac+2ac+2ab+2bc}\)
\(=\dfrac{\left(a+b+c\right)^2}{3\left(ab+bc+ac\right)}\ge\dfrac{3\left(ab+bc+ac\right)}{3\left(ab+bc+ac\right)}=1\)
cho M=a/a+b+b/b+c+c/c+a với a, b,c là các số nguyên dương bất kì . Chứng minh rằng M không thể là số nguyên
M=a/a+b+b/b+c+c/c+a vs a,b,c lớn hơn 0
M=1+b+1+c+1+a=3+a,b,c
M là số nguyên
Ta có a/b+c+b/a+c+c/a+b > a/a+b+c+b/b+c+a+c/b+c+a=a+b+c/a+b+c=1
=>M>1
Lại có M=(1-b/a+b)+(1- c/b+c)+(1-c/a+c)<3-(b/a+b+c+c/b+c+a+a/c+a+b)=3-1=2
=>M < 2
do đo 1<M<2=>đpcm
Bn vào đây:http://olm.vn/hoi-dap/question/431454.html
1.cho a,b,c là các số dương lớn hơn 1.Chứng minh a^2/(b-1)+b^2/(c-1)+c^2/(a-1)>=12
2.Cho các số tự nhiên a,b,c,d. Chứng minh rằng M=a/(a+b+c)+b/(b+c+d)+c/(c+d+a)+d/(d+a+b) không là số tự nhiên
Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath
cho a,b,c,d là các số nguyên dương thỏa mãn a^2+c^2=b^2+d^2 Chứng minh rằng: a+b+c+d là hợp số
Xét : \(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)\)
\(=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\)
Vì \(a\) là số nguyên dương nên \(a,\left(a-1\right)\) là hai số tự nhiên liên tiếp .
\(\Rightarrow a\left(a-1\right)\) chia hết cho 2. Tương tự ta có : \(b\left(b-1\right);c\left(c-1\right);d\left(d-1\right)\) đều chia hết cho 2.
\(\Rightarrow a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\) là số chẵn .
Lại có : \(a^2+c^2=b^2+d^2\Rightarrow a^2+b^2+c^2+d^2=2\left(b^2+d^2\right)\) là số chẵn .
Do đó : \(a+b+c+d\) là số chẵn mà \(a+b+c+d>2\) (Do \(a,b,c,d\inℕ^∗\))
Vậy : \(a+b+c+d\) là hợp số .
Xét :
Vì là số nguyên dương nên là hai số tự nhiên liên tiếp .
chia hết cho 2. Tương tự ta có : đều chia hết cho 2.
là số chẵn .
Lại có : là số chẵn .
Do đó : là số chẵn mà (Do )
Vậy :
Đúng 0
Bình luận (0)