MA

Những câu hỏi liên quan
KK
Xem chi tiết
NL
21 tháng 3 2021 lúc 1:35

Đáp án D là đáp án đúng

Thế tọa độ O lần lượt vào các đáp án thì A: \(2\le0\) (sai), B: \(2\le0\) (sai), C:\(-2\ge0\) (sai)

D: \(2\ge0\) (đúng)

Bình luận (0)
DL
Xem chi tiết
WG
Xem chi tiết
SB
26 tháng 6 2021 lúc 9:44

VV

Bình luận (1)
NH
Xem chi tiết
H24
3 tháng 3 2018 lúc 0:08

Ta có:

Với mọi \(x;y;z\in R\)

\(\left|2x-3y\right|+\left|5y-7z\right|+\left|x^2-y^2-2z^2-45\right|\ge0\)

Dấu "=" xảy ra khi: 

\(\hept{\begin{cases}2x=3y\\5y=7z\\x^2-y^2-2z^2=45\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{2}\\\frac{y}{7}=\frac{z}{5}\end{cases}}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)

Đặt: \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=t\Leftrightarrow\hept{\begin{cases}x^2=441t^2\\y^2=196t^2\\2z^2=200t^2\end{cases}}\)

Mà: \(x^2-y^2-2z^2=45\Leftrightarrow441t^2-196t^2-200t^2=45\Leftrightarrow45t^2=45\Leftrightarrow\orbr{\begin{cases}t=1\\t=-1\end{cases}}\)

Thay vào tìm được x;y;z

Bình luận (0)
DK
Xem chi tiết
ST
3 tháng 9 2017 lúc 17:30

Vì \(\hept{\begin{cases}\left|3-2x\right|\text{≥ }0\\\left|4-5y\right|\text{≥ }0\\\left|5x-3y+z\right|\text{≥ }0\end{cases}\Rightarrow\left|3-2x\right|+\left|4-5y\right|+\left|5x-3y+z\right|\text{≥ }0}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|3-2x\right|=0\\\left|4-5y\right|=0\\\left|5x-3y+z\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{4}{5}\\z=\frac{51}{10}\end{cases}}}\)

Bình luận (0)
ND
Xem chi tiết
NN
Xem chi tiết
TT
Xem chi tiết
TT
14 tháng 8 2015 lúc 13:19

Vì \(x^2-y^2-z^2=0\Rightarrow x^2-y^2=z^2\)

Biến đổi vế trái ta có :

 \(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(5x-3y\right)^2-16z^2\)

\(=25x^2-30xy+9y^2-16\left(x^2-y^2\right)\)

\(=25x^2-30xy+9y^2-16x^2+16y^2\)

\(=9x^2-30xy+25y^2\)

\(=\left(3x-5y\right)^2\)  ( ĐPCM) 

Bình luận (0)
NT
Xem chi tiết
H24
21 tháng 2 2021 lúc 18:26

Vì pt ẩn x của f(x,y) = 0 nhận x=2 làm nghiệm nên ta có:

\(\left(3.2-5y+4\right)\left(2.2+3y-2\right)=0\\ \Leftrightarrow\left(10-5y\right)\left(2+3y\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}10-5y=0\\2+3y=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=2\\y=\dfrac{-2}{3}\end{matrix}\right.\)

Vậy để pt ẩn x của f(x,y) = 0 nhận x=2 làm nghiệm thì \(y=2\) hoặc \(y=\dfrac{-2}{3}\)

Bình luận (0)