Những câu hỏi liên quan
PB
Xem chi tiết
CT
5 tháng 6 2017 lúc 2:34

Bình luận (0)
NL
Xem chi tiết
DC
Xem chi tiết
NT
30 tháng 6 2023 lúc 11:29

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

=>HB=HC

b: HB=HC=BC/2=8cm

=>AH=căn 10^2-8^2=6cm

c: Xét ΔABC có

AH là trung tuyến

G là trọng tâm

=>A,G,H thẳng hàng và AG=2/3AH=4cm

d: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

=>ΔADH=ΔAEH

=>HD=HE

e: HD=HE

HE<HC

=>HD<HC

Bình luận (0)
TV
Xem chi tiết
ND
Xem chi tiết
H24
16 tháng 8 2016 lúc 22:38

Câu 1: (bạn tự vẽ hình nhé)

a) Xét \(\Delta\)BAH và \(\Delta\)CAH :

AHB^ = AHC^  = 90o                    

AB = AC 

ABH^ = ACH^

=> \(\Delta\)BAH = \(\Delta\)CAH (cạnh huyền _ góc nhọn)                (2)

=> BH = CH (2 cạnh tương ứng)          (1) 

Mà BH + CH = BC

<=> 2 * BH = 6

BH = 3 (cm)

ABH^ = ACH^ 

Áp dụng định lý Py-ta-go vào \(\Delta\)ABH:

BH^2 + AH^2 = AB^2

AH^2 = AB^2 - BH^2 = 5^2 - 3^2 = 25 - 9 = 16 (cm)

\(\Rightarrow AH=\sqrt{16}=4\left(cm\right)\)

b) Từ (1)  => AH là đường trung tuyến của \(\Delta\)BAC

=> A, G, H thẳng hàng.

c)  Từ (2) => BAH^ = CAH^ hay BAG^ = CAG^ 

Xét \(\Delta\)BAG và \(\Delta\)CAG:

AB = AC 

BAG^ = CAG^ 

AG chung

=> \(\Delta\)BAG = \(\Delta\)CAG (c.g.c)

=> ABG^ = ACG^ (2 góc tương ứng)

Bình luận (0)
ND
6 tháng 8 2017 lúc 18:08

Cho tam giác ABC cân tại A gọi G là trọng tâm, I là điểm nằm trong tam giác và cách đều ba cạnh của tam giác đó.CM:

BG<BI<BA

GÓC IBG =góc ICG

Xác định vị trí của điểm M sao cho tổng các độ dài BM+MC có giá trị nhỏ nhất đoạn AB

Bình luận (0)
LG
1 tháng 4 2018 lúc 22:12

câu 1

a) BH = CH = 3 cm 
b) Trọng tâm của tam giác ABC chính là giao điểm của 3 đường trung tuyến.Mà AH là 1 trog 3 đường trung tuyến đó => G thuộc AH => G ,A ,H thẳng hàng. 
c) Xét 2 tam giác ABG và ACG ta có 
- AB = AC 
- AG : Cạnh chung 
- Góc BAG = Góc CAG (vì tao giác ABC cân tại A) 
=> Tam giác ABG = Tam giác ACG (C.G.C) 
=> Góc ABG = Góc ACG.

Bình luận (0)
ND
Xem chi tiết
DM
Xem chi tiết
ND
23 tháng 11 2019 lúc 17:39

A B C O I G J S K H L A' M N

a) Đặt J là trung điểm cạnh BC. Theo quan hệ vuông góc giữa đường kính và dây ta có ^OIC = ^OJC = 900

Vậy I thuộc đường tròn đường kính OC cố định (đpcm).

b) Kẻ đường kính BK của (O). d cắt CK tại điểm S. Ta có AK vuông góc AB, IS vuông góc AB

Suy ra IS // AK. Vì I là trung điểm cạnh AC của tam giác AKC nên S là trung điểm CK cố định (đpcm).

c) OJ cắt (O) tại hai điểm phân biệt là A' và L (A' thuộc cung lớn BC). Hạ AH vuông góc BC

Ta thấy \(AH+JL\le AL\le2R=A'L\Rightarrow AH\le A'L-JL=A'J\)

Suy ra \(S=\frac{AH.BC}{2}\le\frac{A'J.BC}{2}\)(không đổi). Vậy S lớn nhất khi A trùng A'.

d) Trên đoạn JB,JC lấy M,N sao cho JM = JN = 1/6.BC. Khi đó M,N cố định.

Đồng thời \(\frac{JG}{JA}=\frac{JM}{JB}=\frac{JN}{JC}=\frac{1}{3}\). Suy ra ^MGN = ^BAC = 1/2.Sđ(BC (Vì GM // AB; GN // AC)

Vậy G là các điểm nhìn đoạn MN dưới một góc không đổi bằng 1/2.Sđ(BC, tức là một đường tròn cố định (đpcm).

Bình luận (0)
 Khách vãng lai đã xóa
TT
23 tháng 11 2019 lúc 21:28

Chào chú Minh.

Bình luận (0)
 Khách vãng lai đã xóa
DM
Xem chi tiết
NN
Xem chi tiết