Tính giới hạn của dãy số B = l i m n 6 + n + 1 3 - 4 n 4 + 2 n - 1 ( 2 n + 3 ) 2
A. +∞
B. -∞
C. 3
D. -3/4
Tính giới hạn của dãy số u n = ( n + 1 ) 1 3 + 2 3 + . . . + n 3 3 n 3 + n + 2 :
A. + ∞ .
B. - ∞ .
C. 1 9 .
D. 1.
Tính giới hạn của dãy số u n = ( n + 1 ) 1 3 + 2 3 + . . . . + n 3 3 n 2 + n + 2
A. +∞
B. -∞
C. 1/9
D. 1
Tính giới hạn của dãy số lim n → ∞ 1 . 1 ! + 2 . 2 ! + . . + n . n ! n + 1 !
A. 1
B. 2
C. 3
D. 4
∀ k ta có: k.k! = ( k+1 )! - k!
ta có:
u n = 2 ! - 1 ! + 3 ! - 2 ! + . . n + 1 ! - n ! n + 1 ! = 1 - 1 n + 1 !
Vậy lim n → ∞ u n = 1
Đáp án A
Tính giới hạn của dãy số D=lim n 2 + n + 1 - 2 n 3 + n 2 - 1 3 + n .:
A. + ∞ .
B. - ∞ .
C. - 1 6 .
D. 1.
Tính giới hạn của dãy số D = l i m ( n 2 + n + 1 - 2 n 3 + n 2 - 1 3 + n )
A. +∞
B. -∞
C. -1/6
D. 1/3
Tính giới hạn của dãy số u n = 1 2 1 + 2 + 1 3 2 + 2 3 + . . . . + 1 ( n + 1 ) n + n n + 1
A. +∞
B. -∞
C. 0
D. 1
Tính giới hạn của dãy số u n = 1 2 1 + 2 + 1 3 2 + 2 3 + . . . + 1 ( n + 1 ) n + n n + 1
A. + ∞ .
B. - ∞ .
C. 0.
D. 1.
tính giới hạn của dãy số C = lim \(\left(\sqrt{4n^2+n+1}-2n\right)\)
\(C=\lim\limits\dfrac{4n^2+n+1-4n^2}{\sqrt{4n^2+n+1}+2n}=\lim\limits\dfrac{\dfrac{n}{n}+\dfrac{1}{n}}{\sqrt{\dfrac{4n^2}{n^2}+\dfrac{n}{n^2}+\dfrac{1}{n^2}}+\dfrac{2n}{n}}=\dfrac{1}{2+2}=\dfrac{1}{4}\)
Cho dãy u n cho bởi công thức truy hồi u 1 = 1 2 u n + 1 = 1 2 − u n nếu n ≥ 1 . Tính giới hạn I của dãy số u n (nếu tồn tại).
A. Không tồn tại giới hạn của dãy u n .
B. I = 2 3 .
C. I = 1 .
D. I = + ∞ .
Đáp án C
Ta có 0 < u 1 < 1 và nếu 0 < u k < 1 thì u k + 1 = 1 2 - u k < 1 nên bằng quy nạp ta có:
0 < u n < 1, ∀ n .
Ta có u 1 = 1 2 < u 2 = 2 3 và nếu u k < u k + 1 thì u k + 2 − u k + 1 = 1 2 − u k + 1 − 1 2 − u k > 0 nên bằng quy nạp ta có: u n < u n + 1 , ∀ n .
Do đó dãy u n tăng và bị chặn nên tồn tại lim u n = I ∈ R .
Ta có
lim u n + 1 = lim 1 2 − u n ⇒ I = 1 2 − I ⇒ − I 2 + 2 I − 1 = 0
⇒ I = 1.