PB

Cho dãy u n  cho bởi công thức truy hồi u 1 = 1 2 u n + 1 = 1 2 − u n nếu n ≥ 1 .  Tính giới hạn I của dãy số u n  (nếu tồn tại).

A. Không tồn tại giới hạn của dãy u n .

B. I = 2 3 .

C. I = 1 .

D. I = + ∞ .

CT
22 tháng 1 2019 lúc 13:28

Đáp án C

Ta có 0 < u 1 < 1  và nếu 0 < u k < 1  thì u k + 1 = 1 2 - u k < 1  nên bằng quy nạp ta có:

0 < u n < 1, ∀ n .

Ta có u 1 = 1 2 < u 2 = 2 3  và nếu u k < u k + 1  thì u k + 2 − u k + 1 = 1 2 − u k + 1 − 1 2 − u k > 0  nên bằng quy nạp ta có:  u n < u n + 1 , ∀ n .

Do đó dãy u n  tăng và bị chặn nên tồn tại lim u n = I ∈ R .

Ta có 

lim u n + 1 = lim 1 2 − u n ⇒ I = 1 2 − I ⇒ − I 2 + 2 I − 1 = 0

⇒ I = 1.

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết