Những câu hỏi liên quan
TH
Xem chi tiết
HN
23 tháng 10 2015 lúc 10:50

TA CÓ:

A=30+3+32+33+........+311

(30+3+32+33)+....+(38+39+310+311)

3(0+1+3+32)+......+38(0+1+3+32

3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)

 

Bình luận (0)
CT
4 tháng 8 2021 lúc 8:54
Fikj Hrtui
Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
PD
16 tháng 11 2018 lúc 21:14

1:\(A=1+3+3^2+3^3+...+3^{11}\)

\(A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)

\(A=4+3^2\cdot\left(1+3\right)+...+3^{10}\cdot\left(1+3\right)\)

\(A=4+3^2\cdot4+....+3^{10}\cdot4\)

\(A=4\cdot\left(1+3^2+...+3^{10}\right)\) chia hết cho 4

Vì ta có 4 chia hết cho 4 => A có chia hết cho 4

Vậy A chia hết cho 4

Bình luận (0)
PD
16 tháng 11 2018 lúc 21:18

2:

\(C=5+5^2+5^3+...+5^8\) chia hết cho 30

\(C=\left(5+5^2\right)+...+\left(5^7+5^8\right)\)

\(C=30+5^2\cdot\left(5+5^2\right)+...+5^6\cdot\left(5+5^2\right)\)

\(C=30\cdot1+5^2\cdot30+...5^6\cdot30\)

\(C=30\cdot\left(5^2+...+5^6\right)\)

Vì ta có 30 chia hết cho 30 nên suy ra C có chia hết cho 30

Vậy C có chia hết cho 30

Bình luận (0)
LT
Xem chi tiết
XO
2 tháng 7 2019 lúc 20:37

1) Ta có : 11a + 22b + 33c

      = 11a + 11.2b + 11.3c

      = 11.(a + 2b + 3c) \(⋮\)11

=> 11a + 22b + 33c \(⋮\)11

2) 2 + 22 + 23 + ... + 2100

= (2 + 22) + (23 + 24) + ... + (299 + 2100)

= (2 + 22) + 22.(2 + 22) + ... + 298.(2 + 22)

= 6 + 22.6 + ... + 298.6

= 6.(1 + 22 + .. + 298)

= 2.3.(1 + 22 + ... + 298\(⋮\)3

=> 2 + 22 + 23 + ... + 2100 \(⋮\)3

3) Ta có:  abcabc = abc000 + abc

 = abc x 1000 + abc 

 = abc x (1000 + 1)

= abc x 1001 

= abc .7. 13.11 (1)

= abc . 7 . 13 . 11 \(⋮\)

=> abcabc \(⋮\)7

=> Từ (1) ta có : abcabc = abc x 7.11.13 \(⋮\)11

     => abcabc \(⋮\)11

=> Từ (1) ta có :  abcabc = abc . 7.11.13 \(⋮\)           13

    => => abcabc \(⋮\)13

Bình luận (0)
NA
2 tháng 7 2019 lúc 20:45

1

.\(11a+22b+33c=11\left(a+2b+3c\right)⋮11\) 

\(\Rightarrow11a+22b+33c⋮11\left(đpcm\right)\) 

hc tốt

Bình luận (0)
SM
Xem chi tiết
PA
11 tháng 11 2016 lúc 22:20

(1+3+3^2)+(3^3+3^4+3^5)+...+(3^9+3^10+3^11)

13+13.3+13.3^2+...+13.3^4

VẬY A CHIA HẾT CHO 13

Bình luận (0)
SM
11 tháng 11 2016 lúc 22:21

Thank's

Bình luận (0)
DL
28 tháng 12 2017 lúc 9:05

Ta có:

A=1+3+32 +33+.................+311  ( CÓ 12 SỐ CHIA HẾT CHO 3)

A=(1+3+3)+(33+34+35)+...........+(39+310+311)

A= 1.(1+3+9)+33 (1+3+9)........+39+(1+3+9).3 CHIA HẾT CHO 3

Bình luận (0)
OO
Xem chi tiết
VT
26 tháng 7 2016 lúc 13:28

a) Ta có : 

A = 1 + 3 + 32 + .... + 311

A = (1 + 3 + 32) + (33 + 34 + 35) + (36 + 37 + 38) + (39 + 310 + 311)

A = 1 . (1 + 3 + 9) + 33 . (1 + 3 + 9) + 36 . (1 + 3 + 9) + 39 . (1 + 3 + 9)

A = 1. 13 + 33 . 13 + 36 . 13 + 39 . 13

A = 13 . (1 + 33 + 36 + 39) chia hết cho 13 (ĐPCM)

b) Ta có : 

A = 1 + 3 + 32 + 33 + ... + 311

A = (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + (38 + 39 + 310 + 311)

A = 1 . (1 + 3 + 9 + 27) + 34 . (1 + 3 + 9 + 27) + 38 . (1 + 3 + 9 + 27)

A = 1 . 40 + 34 . 40 + 38 . 40

A = 40 . (1 + 34 + 38) chia hết cho 40 (ĐPCM)

Ủng hộ mk nha !!! ^_^

Bình luận (0)
H24
26 tháng 7 2016 lúc 14:08

a) Ta có : 

A = 1 + 3 + 32 + .... + 311

A = (1 + 3 + 32) + (33 + 34 + 35) + (36 + 37 + 38) + (39 + 310 + 311)

A = 1 . (1 + 3 + 9) + 33 . (1 + 3 + 9) + 36 . (1 + 3 + 9) + 39 . (1 + 3 + 9)

A = 1. 13 + 33 . 13 + 36 . 13 + 39 . 13

A = 13 . (1 + 33 + 36 + 39) chia hết cho 13 (ĐPCM)

b) Ta có : 

A = 1 + 3 + 32 + 33 + ... + 311

A = (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + (38 + 39 + 310 + 311)

A = 1 . (1 + 3 + 9 + 27) + 34 . (1 + 3 + 9 + 27) + 38 . (1 + 3 + 9 + 27)

A = 1 . 40 + 34 . 40 + 38 . 40

A = 40 . (1 + 34 + 38) chia hết cho 40 (ĐPCM)

Bình luận (0)
H24
25 tháng 11 2016 lúc 18:28

cảm ơn nha!!

Bình luận (0)
HH
Xem chi tiết
HL
Xem chi tiết
NH
4 tháng 11 2017 lúc 20:58

\(A=1+3+3^2+..........+3^{11}\)

\(\Leftrightarrow A=\left(1+3\right)+\left(3^2+3^3\right)+.........+\left(3^{10}+3^{11}\right)\)

\(\Leftrightarrow A=1\left(1+3\right)+3^2\left(1+3\right)+.........+3^{10}\left(1+3\right)\)

\(\Leftrightarrow A=1.4+3^2.4+.......+3^{10}.4\)

\(\Leftrightarrow A=4\left(1+3^2+..........+3^{10}\right)⋮4\left(đpcm\right)\)

Bình luận (0)
H24
4 tháng 11 2017 lúc 21:03

A = 1 + 3 + 32 + 33 + ... + 311

A = ( 1 + 3 ) + ( 32 + 33 ) + ... + ( 310 + 311 )

A = 4 + 32 . ( 1 + 3 ) + ... + 310 . ( 1 + 3 )

A = 4 + 32 . 4 + ... + 310 . 4

A = 4 . ( 1 + 32 + ... + 310 ) \(⋮\) 4 ( Vì trong tích có một thừa số chia hết cho 4 )

~ Chúc bạn học giỏi ! ~

Bình luận (0)
H24
4 tháng 11 2017 lúc 21:07

A = 1 + 3 + 32 + 33 + ... + 311

A = ( 1 + 3 + 32 ) + ... + ( 39 + 310 + 311 )

A = 13 + ... + 39 . ( 1 + 3 + 32 )

A = 13 + ... + 39 . 13

A = 13 . ( 1 + ... + 39 ) \(⋮\) 13 ( Vì trong tích có một thừa số chia hết cho 13 )

~ Chúc bạn học giỏi ! ~

Bình luận (0)
VA
Xem chi tiết
NT
19 tháng 9 2024 lúc 20:07

calibudaicho

Bình luận (0)
TB
Xem chi tiết
NQ
23 tháng 11 2015 lúc 20:33

A = (1 + 3 + 32) + (33 + 34 + 35)  +..... + (39+310+311)

A = 13.1 + 33.13 + ...... + 39.13

A = 13.(1+33+....+39)

A chia hết cho 13

Bình luận (0)
NL
Xem chi tiết
NN
9 tháng 11 2017 lúc 19:23

1)

a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)

\(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)

\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)

\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)

\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)

\(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)

Bình luận (0)