Nếu x = a b , y = c d b , d ≠ 0 thì x.y bằng
A. a d b c
B. a c b d
C. a + c b + d
D. a + d b + c
cho các số hữu tỉ x = a/b ; y = c/d với (a,b,c,d thuộc z ; b,d >0)
a) nếu a nhân d < b nhân c thì x<y
b) nếu x<y thì a/b < b/c
Chứng mình rằng , nếu x<y thì x<z<y
Biết x=a/b , y=c/d , z=a+c/b+d (a,b,c,d thuộc Z , b>d>0)
cho các số hữu tỉ x=a/b , y=c/d , z=a+c/b+d ( a,b,c,d thuộc Z , b,d khác 0 ) CMR nếu x<y thì x<y<z
ĐỀ sai
a = 1 ; b = 4 ; c = 1 ; d = 2 ta có
\(\frac{1}{4}
cho 2 số hữu tỉ x và y
a) chứng tỏ nếu x<y thì a.d<b.c
b) nếu x<y thì a/b<a+c/b+d<c/d
a) x và y là số hữu tỉ nên x có dạng a/b,y có dạng c/d
vì x<y =>a/b<c/d
(=)a.d<b.c(đpcm)
Cho x = a/b, y = c/d, z = a+c/b+d (a, b, c,d thuộc Z; b, d >0). Chứng tỏ rằng nếu x<y thì x<z<y
Cho các số hữu tỉ \(x=\dfrac{a}{b};y=\dfrac{c}{d};z=\dfrac{a+c}{b+d}\left(a,b,c,d\in Z;b>0;d>0\right)\)
Chứng minh rằng nếu x < y thì x < y < z .
Đề bài sai
Ví dụ: với \(a=1;b=2;c=3,d=4\) thì \(x=\dfrac{1}{2}\) ; \(y=\dfrac{3}{4}\) ; \(z=\dfrac{2}{3}\)
Khi đó \(x< y\) nhưng \(z< y\)
\(\text{Vì }\dfrac{a}{b}< \dfrac{c}{d}\text{ nên }ad< bc\left(1\right)\)
\(\text{Xét tích}:a\left(b+d\right)=ab+ad\left(2\right)\)
\(b\left(a+c\right)=ba+bc\left(3\right)\)
\(\text{Từ(1);(2);(3)}\Rightarrow a\left(b+d\right)< b\left(a+c\right)\text{ do đó }\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(4\right)\)
\(\text{Tương tự ta có:}\dfrac{a+c}{b+d}< \dfrac{c}{d}\left(5\right)\)
\(\text{Từ (4);(5) ta được }\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
\(\Rightarrow x< y< z\)
cho các số hữu tỉ x=a/b,y=c/d. z=a+c/b+d(a,b,c,d thuộc Z;b,d >0).Chứng minh rằng nếu x<y thì x<z<y
+)Vì x<y
Suy ra a/b<c/d
Suy ra a.b+a.d<b.c+b.a
Suy ra a.(b+d)<b.(c+a)
Suy ra a/b<c+a/b+d
Suy ra a/b<c+a/b+d<c/d
Suy ra x<z<y
Cho các số hữu tỉ x=a/b ; y=c/d ; z = a+c/ b+d ( với a;b;c;d thuộc z ; b ; d > 0 )
Chứng minh rằng nếu x<y thì x<z<y
Cho các số hữu tỉ: x = a/b; y = c/d; z = a+c/b+d ( a, b, c, d \(\in\)Z; b > 0, d > 0)
Chứng minh rằng nếu x < y thì x < z < y
Bạn tham khảo tại đây:
Câu hỏi của Mạnh Khuất - Toán lớp 7 - Học toán với OnlineMath
Các anh chị có thể giúp em giải bài toán này được ko ạ!
Bài toán1: Cho x/y=y/z=z/x. So sánh x,y,z biết x+y+z khác 0
Bài toán 2: Chứng minh răng:
a) nếu a+z/a-z=b+3/b-3 thì a/z=b/3
b) nếu a-c/c-b=a/b thì 1/c=1/2 (1/a+1/b)
c) nếu a/b=c/d thì 2a^2016 + 5b^2016/2c^2016+5d^2016 = (a+b)^2016/(c+d)^2016
x/y=y/z=z/x
=> x*z = 2*y = x*y = 2*z
Ta có :
x*z = x*y
=> z=y
Ta có :
x*z = 2*y = y*y
Mà y = z (cmt)
=> x*z = y*z
=>x=y
Mà y = z (cmt)
=> x=y=z