Cho tam giác DEF và tam giác HKI có D ^ = H ^ = 90 o , F=I, DF = HI. Biết F ^ = 55 o . Số đo góc K là:
A. 55 °
B. 35 °
C. 30 °
D. 50 °
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho tam giác DEF và tam giác HKI có D ^ = H ^ = 90 o , E ^ = K ^ , DE=HK. Biết F ^ = 80 o . Số đo góc I là:
A. 70 °
B. 80 °
C. 90 °
D. 100 °
cho tam giác def vuông tại d (de<df), Đường cao DH.
a)Chứng minh: tam giác def đồng dạng tam giác hed và df^2= eh.ef.
b)Trên tia hf lấy điểm i sao cho hd=hi. từ i kẻ ik//ih (k thuộc df). CHứng minh: fi.fe=fk.fd
c)Chứng minh : tam giác dek cân
Sửa đề: IK//DH
a: Xét ΔDEF vuông tại D và ΔHED vuông tại H có
góc E chung
=>ΔDEF đồng dạng với ΔHED
=>DF/DH=EF/DE=DE/HE
=>EH*EF=ED^2
b: Xét ΔFIK vuông tại I và ΔFDE vuông tại D có
góc F chung
=>ΔFIK đồng dạng với ΔFDE
=>FI/FD=FK/FE
=>FI*FE=FK*FD
c: góc KDE+góc KIE=180 độ
=>KDEI nội tiếp
=>góc DKE=góc DIE và góc DEK=góc DIK
mà góc DIE=góc DIK
nên góc DKE=góc DEK
=>ΔDEK cân tại D
Câu 1.Cho tam giác DEF và tam giác HIK có DE=HI và EF=HK cần thêm một điều kiện gì để tam giác DEF và tam giác HIK bằng nhau theo trường hợp cạnh góc cạnh A. D=K B. E=góc I C. E=H D. Góc F=K Câu 2. Cho tam giác ABC bằng MNP biết AB=5cm MP=7cm chu vi tam giác ABC =22cm độ dài đoạn BC, NP là A. NP=BC=9cm B.NP=BC=10cm C. NP=BC=11cm D. NP=9cm, BC =10cm
Xét ΔABC vuông tại A và ΔDEF vuông tại D có
BC=EF(gt)
AC=DF(gt)
Do đó: ΔABC=ΔDEF(cạnh huyền-cạnh góc vuông)
Cách 1:
Xét tam giác $ABC$ và $DEF$ có:
$\widehat{A}=\widehat{D}=90^0$
$BC=EF$
$AC=DF$
$\Rightarrow \triangle ABC=\triangle DEF$ (ch-gcv)
Cách 2:
Vì $BC=EF; AC=DF\Rightarrow BC^2-AC^2=EF^2-DF^2$ hay $BA^2=ED^2$
$\Leftrightarrow BA=ED$ (theo định lý Pitago)
Hai tam giác $ABC$ và $DEF$ có các cạnh $AB=DE, BC=EF, AC=DF$ nên bằng nhau theo TH c.c.c
Cho tam giác DEF vuông tại D, EK là tia phân giác của góc DEF ( K thuộc DF ). Trên tia EF lấy điểm H sao cho EH=ED.
a) Chứng minh tam giác EDK=tam giác EHK, từ đó chứng minh HK vuông góc với EF
b) Từ H kẻ đường thẳng vuông góc với DF, nó cắt DF tại I. Chứng minh HI // ED
Cho tam giác DEF vuông ở D có đường cao DH. Vẽ HI vuông góc với DE ở I, HK vuông góc với DF ở K. Trung tuyến DM của tam giác DEF cắt IK ở N, gọi P là giao điểm của DH và IK. Chứng minh: cos2F = 2cos2F - 1
Cho tam giác DEF có E =900 , tia phân giác DH . Qua H kẻ HI vuông góc DF tại I . Chứng minh
a) tam giác DHE = tam giác DHI
b) DH là đường trung trực của EI
c) EH bé hơn HF
d) gọi K là giao điểm DE và IH .chứng minh DH vuông góc KF
a: Xét ΔDEH vuông tại E và ΔDIH vuông tại I có
DH chung
góc EDH=góc IDH
=>ΔDEH=ΔDIH
b: DE=DI
HE=HI
=>DH là trung trực của EI
c: EH=HI
HI<HF
=>EH<HF
d: Xét ΔDFK có
KI,.FE là đường cao
KI cắt FE tại H
=>H là trực tâm
=>DH vuông góc KF
Cho tam giác DEF có E =900 , tia phân giác DH . Qua H kẻ HI vuông góc DF tại I . Chứng minh
a) tam giác DHE = tam giác DHI
b) DH là đường trung trực của EI
c) EH bé hơn HF
d) gọi K là giao điểm DE và IH .chứng minh DH vuông góc KF
Cho tam giác DEF cân tại D. Phân giác góc E và góc F cắt cạnh DF và DE lần lượt ở M và N. EM cắt FN ở I a) chứng minh tam giác DEF cân tại D b)tam giác ENF=∆FME c)DI là phân giác góc I