Những câu hỏi liên quan
KN
Xem chi tiết
HQ
6 tháng 4 2020 lúc 15:05

Điền số thích hợp vào ô trống : 10/12 < 17/ ? < 10/11

Bình luận (0)
 Khách vãng lai đã xóa
H24
7 tháng 4 2020 lúc 16:41

Dùng cái này:

Do: $1/2\, \left( 2\,a+3 \right)  \left( a-3 \right) ^{2} \geqq 0$ với mọi a > 0.

Nên: ${a}^{3}\geqq 9/2\,{a}^{2}-27/2 $ (*)

Áp dụng BĐT (*)...

Bình luận (0)
 Khách vãng lai đã xóa
H24
8 tháng 4 2020 lúc 12:32

Ta có :

(2a+3)(a-3)2 \(\ge\) 0 <=> (2a+3)(a2 -6a+9) \(\ge\) 0

<=> 2a3 - 12a2 +18a +3a3 -18a+7 <=> 2a3 - 9a2 + 27 \(\ge\) 0

Dấu " = " xảy ra <=> x=3

Tương tự ta có : 2b3 -9b2 +27 \(\ge\) 0; 2c3-9c2+27\(\ge\) 0

Mà a2 +b2 + c=27 (gt)

Do đó : 2(a3+b3+c3)-9(a2+b2+c2)+27.3 \(\ge\) 0

<=> 2( a3 + b3 +c3)\(\ge\) 6.27 <=> a3+b3+c3 \(\ge\) 81

Dấu "=" xảy ra <=> a=b=c=3

Vậy GTNN của S= a3+b3+c3 là 81

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
PD
18 tháng 2 2018 lúc 21:09

dự đoán của chúa Pain a=b=3

áp dụng BDT cô si dạng " Senpou" ta có

lưu ý dạng " Senpou" ko có trong sách giáo khoa 

và chỉ được sử dùng khi trong tình thế nguy cấp như . thể hiện . tán gái ...., và chỉ lừa được những thằng ngu :)

ko nên dùng trc mặt thầy cô giáo

\(27=a^2+b^2+ab\ge3\sqrt[3]{a^2b^2ab}=3ab.\)

\(a^3+b^3+3^3\ge3\sqrt[3]{a^3b^3.3^3}=9ab\)

mà \(3ab\le27\Leftrightarrow9ab\le27.3=81\)

suy ra 

\(a^3+b^3+3^3\ge81\Leftrightarrow a^3+b^3\ge81-27=54\)

dấu = xảy ra khi a=b=3

Bình luận (0)
DN
19 tháng 2 2018 lúc 17:41
sai rôi
Bình luận (0)
H24
Xem chi tiết
DA
9 tháng 11 2017 lúc 19:59

24+t94()
Xét hàm () được: MinF(t)=F(23)=19
MinP=MinF(t)=19.dấu "=" xảy ra khi a=b=c=13

Bình luận (0)
HT
Xem chi tiết
NL
16 tháng 3 2022 lúc 15:42

Ủa số thực âm hay không âm vậy em?

Bình luận (1)
NL
16 tháng 3 2022 lúc 16:05

Đặt \(a+b+c=p\) ; \(ab+bc+ca=q\) ; \(abc=r\)

\(\Rightarrow p^2\ge3q\)

Từ giả thiết: \(4q=9r+1\)

Áp dụng BĐT Schur bậc 3:  \(r\ge\dfrac{4pq-p^3}{9}\)

\(\Rightarrow4q\ge4pq-p^3+1\Leftrightarrow p^3-1+4q-4pq\ge0\)

\(\Leftrightarrow\left(p-1\right)\left(p^2+p+1-4q\right)\ge0\)

Nếu \(p< 1\Rightarrow p^2+p+1-4q\le0\)

Mà \(p< 1\Rightarrow1>p^2\Rightarrow0\ge p^2+p+1-4q>p^2+p+p^2-4q\)

\(\Rightarrow2\left(p^2-2q\right)+p< 0\) (vô lý do \(p^2\ge3q\ge2q\))

\(\Rightarrow p\ge1\)

Vậy \(P_{min}=1\) khi \(a=b=c=\dfrac{1}{3}\) hoặc \(\left(a;b;c\right)=\left(\dfrac{1}{2};\dfrac{1}{2};0\right)\) và các hoán vị

Bình luận (0)
H24
Xem chi tiết
AH
16 tháng 4 2023 lúc 23:32

Lời giải:
Áp dụng BĐT Cô-si:

$a^2+b^2\geq 2\sqrt{a^2b^2}=2|ab|\geq 2ab$

$b^2+c^2\geq 2bc$

$c^2+a^2\geq 2ac$

Cộng theo vế các BĐT trên ta được:

$2(a^2+b^2+c^2)\geq 2(ab+bc+ac)$

$\Rightarrow ab+bc+ac\leq a^2+b^2+c^2=27$

Vậy GTLN của $P$ là $27$
 

Bình luận (0)
NH
Xem chi tiết
LH
23 tháng 4 2018 lúc 20:31

Tìm các số nguyên dương a, b thỏa mãn :5/a-b/3=1/6

Bình luận (0)
ND
23 tháng 4 2018 lúc 20:36

quy dong mau len rui tinh theo phuong phap uoc ay cau

Bình luận (0)
TG
23 tháng 4 2018 lúc 20:38

Cho một ý là \(\frac{5}{a}-\frac{b}{3}=\frac{1}{6}\)

cho từng vd : a các cặp số có mẫu chung là 6 là 

                                 2,3 : 6,3;

cho các cặp số 1 \(\frac{5}{2}-\frac{b}{3}=\frac{1}{6}\)

                         2 \(\frac{5}{6}-\frac{b}{3}=\frac{1}{6}\)

cho các số b : \(\frac{5}{6,2}\)+ số đối của b thì số đó âm là âm hoặc dương

có một số vd                 -1,1,2,-2...7 sẽ có có thể 

nên => \(\frac{5}{2}-\frac{7}{3}=\frac{1}{6}\)

Bình luận (0)
NA
Xem chi tiết
H9
Xem chi tiết
NT
15 tháng 9 2023 lúc 12:04

1) \(\left\{{}\begin{matrix}a^3+b^3+c^3=3abc\\a+b+c\ne0\end{matrix}\right.\)  \(\left(a;b;c\in R\right)\)

Ta có :

\(a^3+b^3+c^3\ge3abc\) (Bất đẳng thức Cauchy)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\left(a^3+b^3+c^3=3abc\right)\)

Thay \(a=b=c\) vào \(P=\dfrac{a^2+2b^2+3c^2}{3a^2+2b^2+c^2}\) ta được

\(\Leftrightarrow P=\dfrac{6a^2}{6a^2}=1\)

Bình luận (0)
NT
15 tháng 9 2023 lúc 12:20

\(3^x=y^2+2y\left(x;y>0\right)\)

\(\Leftrightarrow3^x+1=y^2+2y+1\)

\(\Leftrightarrow3^x+1=\left(y+1\right)^2\left(1\right)\)

- Với \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

\(pt\left(1\right)\Leftrightarrow3^0+1=\left(0+1\right)^2\Leftrightarrow2=1\left(vô.lý\right)\)

- Với \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)  

\(pt\left(1\right)\Leftrightarrow3^1+1=\left(1+1\right)^2=4\left(luôn.luôn.đúng\right)\)

- Với \(x>1;y>1\)

\(\left(y+1\right)^2\) là 1 số chính phương

\(3^x+1=\overline{.....1}+1=\overline{.....2}\) không phải là số chính phương

\(\Rightarrow\left(1\right)\) không thỏa với \(x>1;y>1\)

Vậy với \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) thỏa mãn đề bài

Bình luận (0)
VT
Xem chi tiết