Những câu hỏi liên quan
PB
Xem chi tiết
CT
15 tháng 9 2017 lúc 6:45

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 4 2019 lúc 4:40

Bình luận (0)
NH
Xem chi tiết
NC
26 tháng 3 2020 lúc 21:03

G/s f ( x) = 0 có nghiệm nguyên là a 

Khi đó: \(f\left(x\right)=\left(x-a\right)g\left(x\right)\)

Ta có: f ( 2017 ) . f(2018) = 2019

<=> ( 2017 - a ) . g(2017).  ( 2018 - x ) . g ( 2018) = 2019

<=>  ( 2017 - a ) .  ( 2018 - a ) . g ( 2018) .  g(2017).= 2019

Nhận xét thấy một điều rằng ( 2017 - a ) và (2018 - a ) là hai số nguyên liền nhau

=> ( 2017 - a ) . ( 2018 - a) \(⋮\)2  => VT  \(⋮\)2 => 2019 \(⋮\)2 điều này vô lí

Vậy không tồn tại; hay f(x) = 0 không có nghiệm nguyên.

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
VG
10 tháng 3 2019 lúc 8:17

vlllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

sao khó vậy

Bình luận (0)
BM
Xem chi tiết
NN
Xem chi tiết
LH
19 tháng 5 2021 lúc 22:25

a,Có \(\Delta=4\left(m+2\right)^2-4.-\left(4m+12\right)=4m^2+32m+64=4\left(m+4\right)^2\ge0\forall m\)

=> Phương trình luôn có nghiệm với mọi m

b,Phương trình có nghiệm \(\left[{}\begin{matrix}x=\dfrac{-2\left(m+2\right)+2\left(m+4\right)}{2}=2\\x=\dfrac{-2\left(m+2\right)-2\left(m+4\right)}{2}=-2m-6\end{matrix}\right.\) (ở đây không cần chia trường hợp của m bởi khi chia trường hợp thì x chỉ đổi giá trị cho nhau)

TH1: \(x_1=x_2^2\Leftrightarrow4=\left(-2m-6\right)^2\)\(\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=-4\end{matrix}\right.\) (Thay vào pt thấy không thỏa mãn)

TH2:\(x_1=x_2^2\Leftrightarrow-2m-6=2^2\)\(\Leftrightarrow m=-5\) (Thay vào pt thấy thỏa mãn)

Vậy ...

Bình luận (0)
H24
Xem chi tiết
NT
Xem chi tiết
HN
Xem chi tiết
NL
8 tháng 4 2021 lúc 21:44

\(\Delta=\left(n-2\right)^2+12>0\) ; \(\forall n\Rightarrow\) pt đã cho luôn có 2 nghiệm pb trái dấu với mọi n

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=n-2\\x_1x_2=-3\end{matrix}\right.\)

\(\sqrt{x_1^2+2018}-x_2=\sqrt{x_2^2+2018}+x_1\)

\(\Rightarrow x_1^2+x_2^2-2x_2\sqrt{x_1^2+2018}=x_1^2+x_2^2+2018+2x_1\sqrt{x_2^2+2018}\)

\(\Rightarrow-x_2\sqrt{x_1^2+2018}=x_1\sqrt{x_2^2+2018}\)

\(\Rightarrow x_2^2\left(x_1^2+2018\right)=x_1^2\left(x_2^2+2018\right)\)

\(\Rightarrow x_1^2=x_2^2\Rightarrow x_1=-x_2\) (do \(x_1;x_2\) trái dấu)

\(\Rightarrow x_1+x_2=0\Rightarrow n-2=0\Rightarrow n=2\)

Thử lại với \(n=2\) thấy đúng. Vậy...

Bình luận (1)
DM
Xem chi tiết
ND
16 tháng 10 2017 lúc 20:58

1 ( frac ) 2

Bình luận (0)