Ôn tập phương trình bậc hai một ẩn

NN

Cho phương trình: x\(^2\) + 2(m+2)x - (4m+12) = 0

a)Chứng minh rằng phương trình luôn có nghiệm với mọi m

b)Xác định m để phương trình có 2 nghiệm x\(_1\), x\(_2\) thoả mãn x\(_1\)=x\(_2\)\(^2\)

LH
19 tháng 5 2021 lúc 22:25

a,Có \(\Delta=4\left(m+2\right)^2-4.-\left(4m+12\right)=4m^2+32m+64=4\left(m+4\right)^2\ge0\forall m\)

=> Phương trình luôn có nghiệm với mọi m

b,Phương trình có nghiệm \(\left[{}\begin{matrix}x=\dfrac{-2\left(m+2\right)+2\left(m+4\right)}{2}=2\\x=\dfrac{-2\left(m+2\right)-2\left(m+4\right)}{2}=-2m-6\end{matrix}\right.\) (ở đây không cần chia trường hợp của m bởi khi chia trường hợp thì x chỉ đổi giá trị cho nhau)

TH1: \(x_1=x_2^2\Leftrightarrow4=\left(-2m-6\right)^2\)\(\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=-4\end{matrix}\right.\) (Thay vào pt thấy không thỏa mãn)

TH2:\(x_1=x_2^2\Leftrightarrow-2m-6=2^2\)\(\Leftrightarrow m=-5\) (Thay vào pt thấy thỏa mãn)

Vậy ...

Bình luận (0)

Các câu hỏi tương tự
TP
Xem chi tiết
PL
Xem chi tiết
JP
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
TP
Xem chi tiết
KL
Xem chi tiết
NN
Xem chi tiết
LB
Xem chi tiết