tìm x,y,z biết: 12x-20y/2012=30z-12x/2013=20y-30z/2014 và 2x+3y+4z=54
Tìm x,y,z biết :
4z-20y/3=10x-3z/4=3y-4x/10 và 2x+3y-z=40
Ta có:
\(\frac{4z-10y}{3}=\frac{10x-3z}{4}=\frac{3y-4x}{10}.\)
\(\Rightarrow\frac{3.\left(4z-10y\right)}{9}=\frac{4.\left(10x-3z\right)}{16}=\frac{10.\left(3y-4x\right)}{100}.\)
\(\Rightarrow\frac{12z-30y}{9}=\frac{40x-12z}{16}=\frac{30y-40x}{100}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{12z-30y}{9}=\frac{40x-12z}{16}=\frac{30y-40x}{100}=\frac{12z-30y+40x-12z+30y-40x}{9+16+100}=\frac{\left(12z-12z\right)-\left(30y-30y\right)+\left(40x-40x\right)}{125}=\frac{0}{125}=0.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{4z-10y}{3}=0\\\frac{10x-3z}{4}=0\\\frac{3y-4x}{10}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4z-10y=0\\10x-3z=0\\3y-4x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4z=10y\\10x=3z\\3y=4x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{z}{10}=\frac{y}{4}\\\frac{x}{3}=\frac{z}{10}\\\frac{y}{4}=\frac{x}{3}\end{matrix}\right.\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{10}.\)
\(\Rightarrow\frac{2x}{6}=\frac{3y}{12}=\frac{z}{10}\) và \(2x+3y-z=40.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{2x}{6}=\frac{3y}{12}=\frac{z}{10}=\frac{2x+3y-z}{6+12-10}=\frac{40}{8}=5.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{3}=5\Rightarrow x=5.3=15\\\frac{y}{4}=5\Rightarrow y=5.4=20\\\frac{z}{10}=5\Rightarrow z=5.10=50\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(15;20;50\right).\)
Chúc bạn học tốt!
Tìm x, y, z biết: \(\frac{40x-20y}{5}=\frac{10z-40x}{7}=\frac{20y-10z}{9};\)\(2x+3y+4z=48\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau ta có :}\)
\(\Rightarrow\frac{40x-20y}{5}=\frac{10z-40x}{7}=\frac{20y-10z}{9}=\frac{40x-20y+10z-40x+20y-10z}{5+7+9}=0\)
\(\Rightarrow40x=20y\left(1\right);\)
\(20y=10z\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow40x=20y=10z\)
\(\Rightarrow\hept{\begin{cases}40x=20y\\20y=10z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{40}\\\frac{y}{10}=\frac{z}{20}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{20}=\frac{y}{40}\\\frac{y}{40}=\frac{z}{80}\end{cases}}\Rightarrow\frac{x}{20}=\frac{y}{40}=\frac{z}{80}\Rightarrow\frac{2x}{40}=\frac{3y}{120}=\frac{4z}{320}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{20}=\frac{y}{40}=\frac{z}{80}=\frac{2x}{40}=\frac{3y}{120}=\frac{4z}{320}=\frac{2x+3y+4z}{40+120+320}=\frac{48}{480}=\frac{1}{10}\)
\(\Rightarrow10x=20\Rightarrow x=2;\)
\(10y=40\Rightarrow y=4;\)
\(10z=80\Rightarrow z=8\)
Vậy x = 2 ; y = 4 ; z = 8
Tìm x, y, z biết: \(\frac{40x-20y}{5}=\frac{10z-40x}{7}=\frac{20y-10z}{9};\)\(2x+3y+4z=48\)
Từ giả thiết \(\Rightarrow\frac{2.\left(40x-20y\right)}{5}=\frac{2.\left(10z-40x\right)}{7}=\frac{2.\left(2y-10z\right)}{9}\)
\(\Leftrightarrow\frac{80x-40y}{5}=\frac{20z-80x}{7}=\frac{40y-20z}{9}\)
Lm Giúp mk vs mai mk có toán oy ....... Thak Trc na.....hihihi ... :) :) :) :v :v
Câu 1, Giải phương trình : \(\sqrt[3]{3x^2-x+2012}-\sqrt{3x^2-6x+2013}-\sqrt{5x-2014}=\sqrt{2013}\)
Câu 2, Giải hệ phương trình : \(\left\{\begin{matrix}\dfrac{30y}{x^2}+4y=2012\\\dfrac{30z}{y^2}+4z=2012\\\dfrac{30x}{z^2}+4x=2012\end{matrix}\right.\)
câu 1 đề sai hay vô nghiệm ko bt
câu 2: pt thứ 2 thiếu
x^2+3y^2-4x+6y+7=0
3x^2+y^2+10-2xy+26=0
3x^2+6y^2-12x-20y+40=0
\(x^2+3y^2-4x+6y+7=0\\ \Leftrightarrow\left(x^2-4x+4\right)+\left(3y^2+6y+3\right)=0\\ \Leftrightarrow\left(x-2\right)^2+3\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\\ 3x^2+y^2+10x-2xy+26=0\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+2x^2+36=0\\ \Leftrightarrow\left(x-y\right)^2+2x^2+36=0\\ \Leftrightarrow x,y\in\varnothing\left[\left(x-y\right)^2+2x^2+36\ge36>0\right]\\ 3x^2+6y^2-12x-20y+40=0\\ \Leftrightarrow\left(3x^2-12x+12\right)+\left(6y^2-20y+28\right)=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y^2-\dfrac{10}{3}y+\dfrac{14}{3}\right)=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y^2-2\cdot\dfrac{5}{3}y+\dfrac{25}{9}+\dfrac{17}{9}\right)=0\)
\(\Leftrightarrow3\left(x-2\right)^2+6\left(y-\dfrac{5}{3}\right)^2+\dfrac{34}{3}=0\\ \Leftrightarrow x,y\in\varnothing\)
Cho các số thực x,y,z thỏa mãn \(0< x< y\le z\le1\) và \(-12x+20y+28z\le39\). Tìm GTLN của biểu thức \(A=-2x^2+5y^2+7z^2\)
Cho các số thực x,y,z thỏa mãn \(0< x< y\le z\le1\)và \(-12x+20y+28z\le39\).Tính Max\(-2x^2+5y^2+7z^2\)
b) Tìm ba số x, y và z biết : 2x = 3y = 4z và y – x + z = 2013
Theo đề ta có:
y-x+z=2013
\(2x=3y=4z\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tc dãy tỉ số = nhau ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{y-x+z}{4-6+3}=\frac{2013}{1}=2013\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{6}=2013\Rightarrow x=2013\cdot6=12078\\\frac{y}{4}=2013\Rightarrow y=2013\cdot4=8052\\\frac{z}{3}=2013\Rightarrow z=2013\cdot3=6039\end{cases}}\)
1/2.(6x-2y).(3x+y)
(2/3z-2/5x).(1/3z+1/5x).1/2
(5y-3x).1/4.(12x+20y)
(3/4y-1/2x).(x+3/2y).2
(a+b+c).(a+b-c)
(x-y+z).(x+y-z)
mng giúp mình vs ạ
\(\dfrac{1}{2}\left(6x-2y\right)\left(3x+y\right)=\dfrac{1}{2}.2\left(3x-y\right)\left(3x+y\right)=9x^2-y^2\)
\(\left(\dfrac{2}{3}z-\dfrac{2}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}x\right).\dfrac{1}{2}=\left(\dfrac{1}{3}z-\dfrac{1}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}z\right).2.\dfrac{1}{2}=\dfrac{1}{9}z^2-\dfrac{1}{25}x^2\)
\(\left(5y-3x\right).\dfrac{1}{4}\left(12x+20y\right)=\left(5y-3x\right)\left(5y+3x\right).4.\dfrac{1}{4}=25y^2-9x^2\)
\(\left(\dfrac{3}{4}y-\dfrac{1}{2}x\right)\left(x+\dfrac{3}{2}y\right)=\left(\dfrac{3}{2}y-x\right)\left(\dfrac{3}{2}y+x\right)=\dfrac{9}{4}y^2-x^2\)
\(\left(a+b+c\right)\left(a+b+c\right)=\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
\(\left(x-y+z\right)\left(x+y-z\right)=x^2-\left(y-z\right)^2=x^2-y^2-z^2+2yz\)
a: \(\dfrac{1}{2}\left(6x-2y\right)\left(3x+y\right)=\left(3x-y\right)\cdot\left(3x+y\right)=9x^2-y^2\)
b: \(\left(\dfrac{2}{3}z-\dfrac{2}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}x\right)\cdot\dfrac{1}{2}\)
\(=\left(\dfrac{1}{3}z-\dfrac{1}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}x\right)\)
\(=\dfrac{1}{9}z^2-\dfrac{1}{25}x^2\)
c: \(\left(5y-3x\right)\cdot\dfrac{1}{4}\cdot\left(12x+20y\right)\)
\(=\left(5y-3x\right)\left(5y+3x\right)\)
\(=25y^2-9x^2\)
d: \(\left(\dfrac{3}{4}y-\dfrac{1}{2}x\right)\left(\dfrac{3}{2}y+x\right)\cdot2\)
\(=\left(\dfrac{3}{2}y-x\right)\left(\dfrac{3}{2}y+x\right)\)
\(=\dfrac{9}{4}y^2-x^2\)
e: \(\left(a+b+c\right)\left(a+b-c\right)\)
\(=\left(a+b\right)^2-c^2\)
\(=a^2+2ab+b^2-c^2\)