Những câu hỏi liên quan
PB
Xem chi tiết
CT
13 tháng 9 2019 lúc 16:09

Bình luận (0)
NN
Xem chi tiết
NT
23 tháng 12 2023 lúc 9:42

Câu 5: B

Câu 6: 

a: ĐKXĐ: \(x-2\ne0\)

=>\(x\ne2\)

b: ĐKXĐ: \(x+1\ne0\)

=>\(x\ne-1\)

8:

\(A=\dfrac{x^2+4}{3x^2-6x}+\dfrac{5x+2}{3x}-\dfrac{4x}{3x^2-6x}\)

\(=\dfrac{x^2+4-4x}{3x\left(x-2\right)}+\dfrac{5x+2}{3x}\)

\(=\dfrac{\left(x-2\right)^2}{3x\left(x-2\right)}+\dfrac{5x+2}{3x}\)

\(=\dfrac{x-2+5x+2}{3x}=\dfrac{6x}{3x}=2\)

7: 

\(\dfrac{8x^3yz}{24xy^2}\)

\(=\dfrac{8xy\cdot x^2z}{8xy\cdot3y}\)

\(=\dfrac{x^2z}{3y}\)

Bình luận (0)
DR
Xem chi tiết
MN
17 tháng 2 2021 lúc 13:03

\(a.\)

\(\dfrac{16x^2-1}{16x^2-8x+1}\\ =\dfrac{\left(4x\right)^2-1}{\left(4x-1\right)^2}\\ =\dfrac{\left(4x-1\right)\left(4x+1\right)}{\left(4x-1\right)^2}\\ =\dfrac{4x+1}{4x-1}\)

\(b.\)

\(\dfrac{4x^2-4xy+y^2}{-\left(4x^2-y^2\right)}\\ =-\dfrac{\left(2x-y\right)^2}{\left(2x-y\right)\left(2x+y\right)}\\ =\dfrac{-\left(2x-y\right)}{2x+y}\\ =\dfrac{y-2x}{y+2x}\)

Bình luận (0)
NT
17 tháng 2 2021 lúc 13:04

a) Ta có: \(\dfrac{16x^2-1}{16x^2-8x+1}\)

\(=\dfrac{\left(4x-1\right)\left(4x+1\right)}{\left(4x-1\right)^2}\)

\(=\dfrac{4x+1}{4x-1}\)

b) Ta có: \(\dfrac{4x^2-4xy+y^2}{y^2-4x^2}\)

\(=\dfrac{\left(2x-y\right)^2}{\left(y-2x\right)\left(y+2x\right)}\)

\(=\dfrac{\left(y-2x\right)^2}{\left(y-2x\right)\left(y+2x\right)}\)

\(=\dfrac{y-2x}{y+2x}\)

Bình luận (0)
MD
Xem chi tiết
VT
25 tháng 11 2016 lúc 11:32

a ) \(\frac{\left(a+b\right)^2-c^2}{a+b+c}=\frac{\left(a+b+c\right)\left(a+b-c\right)}{a+b+c}=a+b-c\)

b ) \(\frac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}=\frac{a^2+2ab+b^2-c^2}{a^2+2ac+c^2-b^2}\)

\(=\frac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\frac{\left(a+b+c\right)\left(a+b-c\right)}{\left(a+c+b\right)\left(a+c-b\right)}=\frac{a+b-c}{a-b+c}\)

Bình luận (0)
HN
25 tháng 11 2016 lúc 11:48

a) \(\frac{\left(a+b\right)^2-c^2}{a+b+c}=\frac{\left(a+b+c\right)\left(a+b-c\right)}{a+b+c}=a+b-c\)

b) \(\frac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}=\frac{\left(a^2+2ab+b^2\right)-c^2}{\left(a^2+2ac+c^2\right)-b^2}=\frac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\frac{\left(a+b+c\right)\left(a+b-c\right)}{\left(a+c+b\right)\left(a+c-b\right)}=\frac{a+b-c}{a+c-b}\)

Bình luận (0)
HL
Xem chi tiết
OP
15 tháng 8 2016 lúc 16:10

\(\frac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}\)

\(=\frac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}\)

\(=\frac{\left(a+b-c\right)\left(a+b+c\right)}{\left(a+c-b\right)\left(a+c+b\right)}\)

\(=\frac{a+b-c}{a+c-b}\)

Bạn sai đề nên mik sửa và làm luôn nha

Bình luận (0)
H24
15 tháng 8 2016 lúc 16:14

 \(a^2+b^2-c^2+2ab\)

______________________

\(a^2+b^2+c^2+2ac\)

\(a^2+b^2-c^2+2ab\) (Ở đây ta gạch a2,b2,c2,2a)

_____________________________

\(a^2+b^2+c^2+2ac\)   (Ở đây ta cũng gạch a2,b2,c2,2a)

=> Kết quả cuối của biểu thức là: \(\frac{b}{c}\)

Tíck cho mình nha

Bình luận (0)
DN
Xem chi tiết
DR
Xem chi tiết
H24
18 tháng 2 2021 lúc 19:16

\(a,\dfrac{21x^2y^3}{24x^3y^2}=\dfrac{7y}{8x}\)

\(b,\dfrac{15xy^3\left(x^2-y^2\right)}{20x^2y\left(x+y\right)^2}=\dfrac{15xy^3\left(x-y\right)\left(x+y\right)}{20x^2y\left(x+y\right)^2}=\dfrac{3y^2\left(x-y\right)}{4x\left(x+y\right)}=\dfrac{3xy^2-3y^3}{4x^2+4xy}\)

Bình luận (0)
NT
18 tháng 2 2021 lúc 22:50

a) Ta có: \(\dfrac{21x^2y^3}{24x^3y^2}\)

\(=\dfrac{21x^2y^3:3x^2y^2}{24x^3y^2:3x^2y^2}\)

\(=\dfrac{7y}{8x}\)

Bình luận (0)
CY
Xem chi tiết
HQ
9 tháng 2 2020 lúc 19:17

a, Gợi ý nà :3

a^2 + b^2 - c^2 +2ab = (a^2 + b^2 + 2ab) -c^2 = (a+b)^2 - c^2 = (a + b - c)(a + b + c)

a^2 - b^2 + c^2 + 2ac = (a + c)^2 - b^2 = (a + b + c)(a - b + c)

b. Gợi ý tiếp luôn nà :3

a^3 + b^3 + c^3 - 3abc

= (a^3 + b^3 +3a^2 x b + 3ab^2) - 3ab(a+b) -3abc + c^3

= (a+b)^3 + c^3 - 3ab(a+b+c) 

= (a + b+ c)[(a+b)^2 - c(a+b) +c^2] - 3ab(a+b+c)

=(a+b+c)(a^2 + b^2 + c^2 -ac -bc + 2ab -3ab)

=(a+b+c)(a^2 + b^2 + c^2 - ab - bc -ca)

Rồi cứ thế rút gọn...

Học tốt nha bạn :3

Bình luận (0)
 Khách vãng lai đã xóa
H24
9 tháng 2 2020 lúc 19:20

\(\frac{a^2+2ab+b^2-c^2}{a^2+2ac+c^2-b^2}=\frac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\frac{\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a-b+c\right)}=\frac{a+b-c}{a-b+c}\)

\(\text{nhận xét: ta có hằng đẳng thức:}\)

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

đó đến đây bạn làm tiếp

Bình luận (0)
 Khách vãng lai đã xóa
LT
9 tháng 2 2020 lúc 19:21

b/\((\sum a^3)-3abc=(\sum a).(\sum a^2-\sum ab)\)\(\Rightarrow\)\(\frac{(\sum a^3)-3abc}{(\sum a^2-\sum ab)}=\frac {(\sum a).(\sum a^2-\sum ab)}{(\sum a^2-\sum ab)}=a+b+c\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
PB
Xem chi tiết
CT
5 tháng 1 2017 lúc 10:07

Thay a = -2, b = -√3 ta được:

|3(-2)|.|-√3 - 2| = 6(√3 + 2)

= 6(1,732 + 2) = 6.3,732

22,392

Bình luận (0)