Những câu hỏi liên quan
TM
Xem chi tiết
DK
Xem chi tiết
MN
21 tháng 10 2018 lúc 15:34

A B C H D

ta có \(\sin B=\frac{AC}{BC}=\frac{12}{15}=\frac{4}{5}\Rightarrow\widehat{B}\approx53^o\)

\(\Rightarrow\widehat{C}=90^o-\widehat{B}\approx37^o\)

... Py-ta-go \(\Rightarrow AB^2=BC^2-AC^2=15^2-12^2=9^2\)

\(\Rightarrow AB=9cm\)

b, gọi BD là x .Áp dụng tc đường phân giác ta có:

\(\frac{AB}{AC}=\frac{BD}{CD}=\frac{x}{BC-x}\)(x<15)

\(\Rightarrow\frac{9}{12}=\frac{x}{15-x}\Rightarrow x=\frac{45}{7}cm\)

Hệ thức lượng \(\Rightarrow AB.AC=BC.AH\Rightarrow AH=\frac{AC.AB}{BC}\)\(\Rightarrow AH=\frac{9.12}{15}=7,2\left(cm\right)\)

.... Py-ta-go: \(\Rightarrow BH^2=AB^2-AH^2=9^2-7,2^2=29,16\)

\(\Rightarrow BH=5,4cm\)

do AB<AC nên H nằm giữa B và D

\(\Rightarrow HD=BD-BH=\frac{45}{7}-5,4=\frac{36}{35}\left(cm\right)\)

... py ta go..\(AD^2=HD^2+AH^2=\left(\frac{36}{35}\right)^2+7,2^2\)

\(\Rightarrow AD^2=\frac{2592}{49}\Rightarrow AD=\frac{36\sqrt{2}}{7}cm\)

Bạn tự kết luận nha! hồi nãy mk đã gửi một bài chi tiết hết sức rồi mà olm lại báo có lỗi xảy ra nên ko gửi lên được!

Mấy cái chỗ .... thì bạn tự điền thêm vào nha!

k cho mk là được rồi! mk ko cần thẻ! cám ơn!

Bình luận (0)
MN
21 tháng 10 2018 lúc 15:37

A B C H D

ta có \(\sin B=\frac{AC}{BC}=\frac{12}{15}=\frac{4}{5}\Rightarrow\widehat{B}\approx53^o\)

\(\Rightarrow\widehat{C}=90^o-\widehat{B}\approx37^o\)

... Py-ta-go \(\Rightarrow AB^2=BC^2-AC^2=15^2-12^2=9^2\)

\(\Rightarrow AB=9cm\)

b, gọi BD là x .Áp dụng tc đường phân giác ta có:

\(\frac{AB}{AC}=\frac{BD}{CD}=\frac{x}{BC-x}\)(x<15)

\(\Rightarrow\frac{9}{12}=\frac{x}{15-x}\Rightarrow x=\frac{45}{7}cm\)

Hệ thức lượng \(\Rightarrow AB.AC=BC.AH\Rightarrow AH=\frac{AC.AB}{BC}\)\(\Rightarrow AH=\frac{9.12}{15}=7,2\left(cm\right)\)

.... Py-ta-go: \(\Rightarrow BH^2=AB^2-AH^2=9^2-7,2^2=29,16\)

\(\Rightarrow BH=5,4cm\)

do AB<AC nên H nằm giữa B và D

\(\Rightarrow HD=BD-BH=\frac{45}{7}-5,4=\frac{36}{35}\left(cm\right)\)

... py ta go..\(AD^2=HD^2+AH^2=\left(\frac{36}{35}\right)^2+7,2^2\)

\(\Rightarrow AD^2=\frac{2592}{49}\Rightarrow AD=\frac{36\sqrt{2}}{7}cm\)

Bạn tự kết luận nha! hồi nãy mk đã gửi một bài chi tiết hết sức rồi mà olm lại báo có lỗi xảy ra nên ko gửi lên được!

Lần  2 nó lại bảo phải kiểm duyệt trước khi hiển thị! Ức chế hết sức!!! chương trình này có lẽ lỗi nặng?

Mấy cái chỗ .... thì bạn tự điền thêm vào nha!

k cho mk là được rồi! mk ko cần thẻ! cám ơn!

Bình luận (0)
AT
Xem chi tiết
H24
13 tháng 10 2021 lúc 9:30

 

Bình luận (0)
DK
Xem chi tiết
NL
11 tháng 3 2021 lúc 20:42

Tam giác ABC có: góc A = 90 *
=> góc BAD + góc DAC=90*
Tam giác AHD có : góc AHD = 90*
=> góc HDA + góc HAD = 90*
mà góc DAC = góc HAD ( do AD là pg góc HAC)
=> Góc BAD = góc HDA
=> Tam giác ABD cân tại B => AB = BD
Mặt khác : c/m đc Tam giác ABH đồng dạng với tam giác CBA
=> AB ^ 2 = BH x BC
= ( BD -12) BC = (AB - 12).50
= 50AB - 600
<=> AB^2 - 50AB + 600 = 0

Cre:mạng

Bình luận (0)
 Khách vãng lai đã xóa
NK
Xem chi tiết
PM
9 tháng 5 2021 lúc 18:04

mình chịu thoiii

Bình luận (0)
 Khách vãng lai đã xóa
H24
12 tháng 7 2024 lúc 22:09

Gì nhiều vậy???

 

Bình luận (0)
PP
22 tháng 8 2024 lúc 0:12

khôn vừa th , 1 câu hỏi đáp cho đc bao nhiêu điểm mà đòi phải làm tận 10 bài ,khôn như m thì dell ai muốn làm

Bình luận (0)
H24
Xem chi tiết
NL
22 tháng 4 2021 lúc 17:50

Do E là chân đường phân giác góc D, theo định lý phân giác:

\(\dfrac{EA}{EB}=\dfrac{DA}{DB}\)

Ta có:

\(\left\{{}\begin{matrix}\widehat{BDE}+\widehat{EDF}+\widehat{FDC}=180^0\\\widehat{EDF}=90^0\left(gt\right)\end{matrix}\right.\) \(\Rightarrow\widehat{BDE}+\widehat{FDC}=90^0\) (1)

\(\left\{{}\begin{matrix}\widehat{FDA}+\widehat{ADE}=90^0\left(gt\right)\\\widehat{ADE}=\widehat{BDE}\left(\text{DE là phân giác góc D}\right)\end{matrix}\right.\)  \(\Rightarrow\widehat{BDE}+\widehat{FDA}=90^0\) (2)

(1);(2) \(\Rightarrow\widehat{FDA}=\widehat{FDC}\Rightarrow DF\) là phân giác góc \(\widehat{ADC}\)

\(\Rightarrow\dfrac{FC}{FA}=\dfrac{DC}{DA}\) (định lý phân giác)

\(\Rightarrow\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=\dfrac{DA}{DB}.\dfrac{DB}{DC}.\dfrac{DC}{DA}=1\) (đpcm)

Bình luận (2)
NL
22 tháng 4 2021 lúc 17:50

undefined

Bình luận (0)
NL
22 tháng 4 2021 lúc 17:57

Câu a quá dễ rồi bạn tự làm

Áp dụng định lý Pitago:

\(BC=\sqrt{AB^2+AC^2}=20\) (cm)

Theo câu a, do 2 tam giác vuông HBA và ABC đồng dạng

\(\Rightarrow\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{12.16}{20}=9,6\left(cm\right)\)

Bình luận (1)
HD
Xem chi tiết
ZT
5 tháng 4 2022 lúc 9:58

 

 

Bình luận (1)
NT
5 tháng 4 2022 lúc 12:57

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

\(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)

\(CH=\dfrac{AC^2}{BC}=\dfrac{16^2}{20}=12.8\left(cm\right)\)

b: Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)

Do đó; BD=60/7(cm); CD=80/7(cm)

Bình luận (0)
QQ
Xem chi tiết
NT
15 tháng 5 2022 lúc 18:11

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

góc B chung

Do đó ΔHBA\(\sim\)ΔABC

b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

c: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

hay AD/AC=AE/AB

=>ΔADE\(\sim\)ΔACB

Bình luận (0)
TK
Xem chi tiết
H24
29 tháng 9 2018 lúc 17:34

tự làm đi cu, dễ vl ra

Bình luận (0)