Những câu hỏi liên quan
HN
Xem chi tiết
NK
29 tháng 12 2015 lúc 22:11

Ta có

\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)

\(\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

Áp dụng cô si cho từng cặp

\(\frac{a}{c}+\frac{c}{a}\ge2;\frac{a}{b}+\frac{b}{a}\ge2;\frac{b}{c}+\frac{c}{b}\ge2\)

=>....

Dấu = xảy ra <=>a=b=c

 

 

Bình luận (0)
HV
Xem chi tiết
EC
15 tháng 3 2017 lúc 22:21

Hỏi đáp Toán

Bình luận (0)
TN
15 tháng 3 2017 lúc 22:22

mô đây , đi hc thêm à chớ bài thầy hải ko có hay BDHSG

Bình luận (0)
NL
15 tháng 3 2017 lúc 22:24

Này #Edogawa Conan, đây là chỗ học chứ không phải chỗ ddeerr đăng linh tinh đâu. Bạn ko nghe cô Thủy nói à? Lần 1 cảnh cáo, lần 2 khóa nick đó. Thế nên đừng có đăng mấy cái ko liên quan tới chủ đề.

Bình luận (3)
NN
Xem chi tiết
ND
20 tháng 5 2018 lúc 8:47

\(a+b+c=1\\ \Rightarrow\left(a+b+c\right)^2=1\\ \left(a+b+c\right)^2\ge4a\left(b+c\right)\\ \Rightarrow1\ge4a\left(b+c\right)\\ \Rightarrow b+c\ge4a\left(b+c\right)^2\ge16abc\)

Áp dụng \(\left(x+y\right)^2\ge4xy\)

Bình luận (0)
TH
18 tháng 5 2018 lúc 22:02

1 = (a + b+ c)^2 >= 4a(b + c)
<=> b +c >= 4a(b + c)^2
Mà (b + c)^2 >= 4bc
Vậy b + c >= 4a.4bc = 16abc

Bình luận (0)
TH
18 tháng 5 2018 lúc 22:04

ta có a>0,b+c>0

áp dụng Bất đẳng thức cosi ta có:

a+b+c>=2nhân với căn của a.(b+c)

=>(a+b+c)^2=4.a.(b+c)

Bình luận (0)
H24
Xem chi tiết
DN
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết
JT
Xem chi tiết
JT
Xem chi tiết