Những câu hỏi liên quan
ND
Xem chi tiết
KL
30 tháng 8 2023 lúc 14:09

loading...

a) Vẽ tia By' là tia đối của tia By

Ta có:

∠ABy' + ∠ABy = 180⁰ (kề bù)

⇒ ∠ABy' = 180⁰ - ∠ABy

= 180⁰ - 135⁰

= 45⁰

⇒ ∠ABy' = ∠BAx = 45⁰

Mà ∠ABy' và ∠BAx là hai góc so le trong

⇒ By // Ax

b) Ta có:

∠CBy' = ∠ABC - ∠ABy'

= 75⁰ - 45⁰

= 30⁰

⇒ ∠CBy' = ∠BCz = 30⁰

Mà ∠CBy' và ∠BCz là hai góc so le trong

⇒ By // Cz

Bình luận (0)
CY
Xem chi tiết
PB
Xem chi tiết
CT
22 tháng 10 2019 lúc 10:59

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có hai mặt phẳng song song là: (Ax, AD) // (By, BC)

Hai mặt phẳng này bị cắt bởi mặt phẳng (β) nên ta suy ra các giao tuyến của chúng phải song song nghĩa là A′D′ // B′C′.

Tương tự ta chứng minh được A′B′ // D′C′. Vậy A', B', C', D' là hình bình hành. Các hình thang AA'C'C và BB'D'D đều có OO' là đường trung bình trong đó O là tâm của hình vuông ABCD và O' là tâm của hình bình hành A',B',C',D'. Do đó: AA′ + CC′ = BB′ + DD′ = 2OO′

b) Muốn hình bình hành A',B',C',D' là hình thoi ta cần phải có A'C' ⊥ B'D'. Ta đã có AC ⊥ BD. Người ta chứng minh được rằng hình chiếu vuông góc của một góc vuông là một góc vuông khi và chỉ khi góc vuông đem chiếu có ít nhất một cạnh song song với mặt phẳng chiếu hay nằm trong mặt chiếu. Vậy A', B', C', D' là hình thoi khi và chỉ khi A'C' hoặc B'D' song song với mặt phẳng (α) cho trước. Khi đó ta có AA' = CC' hoặc BB' = DD'.

c) Muốn hình bình hành A', B', C', D' là hình chữ nhật ta cần có A'B' ⊥ B'C', nghĩa là A'B' hoặc B'C' phải song song với mặt phẳng (α)(α). Khi đó ta có AA' = BB' hoặc BB' = CC', nghĩa là hình bình hành A', B', C', D' có hai đỉnh kề nhau cách đều mặt phẳng (α) cho trước.

Bình luận (0)
QL
Xem chi tiết
KT
18 tháng 9 2023 lúc 18:02

Qua C kẻ đường thẳng d song song với Ax

Vì Ax // By nên d // By

Vì d // Ax nên \(\widehat A = \widehat {{C_1}}\)(2 góc so le trong)

Vì d // By nên \(\widehat B = \widehat {{C_2}}\) (2 góc so le trong)

Mà \(\widehat C = \widehat {{C_1}} + \widehat {{C_2}}\)

Vậy \(\widehat C = \widehat A + \widehat B\)(đpcm)

Bình luận (0)
H24
Xem chi tiết
NT
12 tháng 12 2023 lúc 20:05

a: Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

Xét (O) có

CM,CA là các tiếp tuyến

Do đó: CM=CA và OC là phân giác của góc MOA

Xét (O) có

DM,DB là các tiếp tuyến

Do đó: DM=DB và OD là phân giác của góc MOB

CD=CM+MD

mà CM=CA và DB=DM

nên CD=CA+DB

b: 

OC là phân giác của góc MOA

=>\(\widehat{MOA}=2\cdot\widehat{MOC}\)

OD là phân giác của góc MOB

=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)

Ta có: \(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)

=>\(2\cdot\widehat{MOC}+2\cdot\widehat{MOD}=180^0\)

=>\(2\left(\widehat{MOC}+\widehat{MOD}\right)=180^0\)

=>\(2\cdot\widehat{COD}=180^0\)

=>\(\widehat{COD}=90^0\)

=>ΔCOD vuông tại O

Xét ΔOCD vuông tại O có OM là đường cao

nên \(MC\cdot MD=OM^2\)

=>\(AC\cdot BD=R^2\)

c: Gọi H là giao điểm của DO và MB

Ta có: DM=DB

=>D nằm trên đường trung trực của MB(1)

Ta có: OM=OB

=>O nằm trên đường trung trực của MB(2)

Từ (1) và (2) suy ra OD là trung trực của MB

=>OD\(\perp\)MB tại H

Ta có: \(\widehat{GMH}+\widehat{OGM}=90^0\)(ΔGHM vuông tại H)

\(\widehat{DMG}+\widehat{OMG}=\widehat{DMO}=90^0\)

mà \(\widehat{OGM}=\widehat{OMG}\)

nên \(\widehat{GMH}=\widehat{DMG}\)

=>MG là phân giác của góc DMB

Xét (O) có

DM,DB là các tiếp tuyến

Do đó: DO là phân giác của góc MDB

Xét ΔMDB có

DH,MG là các đường phân giác

DH cắt MG tại G

Do đó: G là tâm đường tròn nội tiếp ΔMDB

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 9 2017 lúc 14:06

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Theo giả thiết ta có M và N là hai điểm di động lần lượt trên hai tia Ax và By sao cho AM + BN = MN.

a) Kéo dài MA một đoạn AP = BN, ta có MP = MN và OP = ON.

Do đó ΔOMP = ΔOMN (c.c.c)

⇒ OA = OH nên OH = a.

Ta suy ra HM = AM và HN = BN.

b) Gọi M’ là hình chiếu vuông góc của điểm M trên mặt phẳng (Bx’, By) ta có:

HK // MM’ với K ∈ NM’.

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó đối với tam giác BNM’ đường thẳng BK là phân giác của góc (x'By) .

c) Gọi (β) là mặt phẳng (AB, BK). Vì HK // AB nên HK nằm trong mặt phẳng (β) và do đó H thuộc mặt phẳng (β). Trong mặt phẳng (β) ta có OH = a. Vậy điểm H luôn luôn nằm trên đường tròn cố định, đường kính AB và nằm trong mặt phẳng cố định (β) = (AB, BK)

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 6 2017 lúc 3:31

Ở trong góc AOB vẽ tia O t / / A x . Khi đó A O t ^ = A ^ = a °  (cặp góc so le trong).

Suy ra B O t ^ = b ° . Vậy B O t ^ = B ^ = b ° .

Do đó By // Ot (vì có cặp góc so le trong bằng nhau).

Vậy Ax // By (vì cùng song song với Ot)

Bình luận (0)
LK
Xem chi tiết
PB
Xem chi tiết
CT
24 tháng 2 2019 lúc 15:07

Giải bài 37 trang 126 SGK Toán 9 Tập 2 | Giải toán lớp 9

a) Ta có OM, ON lần lượt là tia phân giác của AOP, BOP (tính chất của hai tiếp tuyến cắt nhau).

Mà AOP kề bù với BOP nên suy ra OM vuông góc với ON.

Vậy ΔMON vuông tại O.

Góc Giải bài 37 trang 126 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc nội tiếp chắn nửa đường tròn nên Giải bài 37 trang 126 SGK Toán 9 Tập 2 | Giải toán lớp 9 = 900

Tứ giác AOPM có:

Giải bài 37 trang 126 SGK Toán 9 Tập 2 | Giải toán lớp 9

Suy ra, tứ giác AOPM nội tiếp đường tròn.

Giải bài 37 trang 126 SGK Toán 9 Tập 2 | Giải toán lớp 9

Xét ∆ MON và ∆ APB có:

Giải bài 37 trang 126 SGK Toán 9 Tập 2 | Giải toán lớp 9

=> Hai tam giác MON và APB đồng dạng

b)

* Tam giác MON vuông tại O có đường cao OP nên

OP2 = MP. NP (1)

* Theo tính chất hai tiếp tuyến cắt nhau ta có

MA= MP và NB = NP (2)

Từ (1) và (2) suy ra: OP2 = MA. NB hay R2 = MA. NB ( đpcm)

c) * Theo a, ∆MON và APB đồng dạng với nhau với tỉ số đồng dạng là:

Giải bài 37 trang 126 SGK Toán 9 Tập 2 | Giải toán lớp 9

d) Nửa hình tròn APB quay quanh AB tạo ta hình cầu có bán kính R.

nên thể tích khối cầu tạo ra là: Giải bài 37 trang 126 SGK Toán 9 Tập 2 | Giải toán lớp 9

Bình luận (0)