Những câu hỏi liên quan
CT
Xem chi tiết
NA
6 tháng 4 2020 lúc 15:01

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Bình luận (0)
 Khách vãng lai đã xóa
PH
7 tháng 4 2020 lúc 11:24

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Bình luận (0)
 Khách vãng lai đã xóa
PT
12 tháng 4 2020 lúc 15:10

Mình không biết sin lỗi vạn

Bình luận (0)
 Khách vãng lai đã xóa
WK
Xem chi tiết
NL
26 tháng 3 2023 lúc 22:24

Đặt \(3^x=t>0\Rightarrow t^2-2\left(7-x\right)t+45-18x=0\)

\(\Delta'=\left(7-x\right)^2-\left(45-18x\right)=\left(x+2\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=7-x+x+2=9\\t=7-x-\left(x+2\right)=5-2x\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}3^x=9\Rightarrow x=2\\3^x=5-2x\left(1\right)\end{matrix}\right.\)

Xét (1) \(\Leftrightarrow3^x+2x-5=0\)

Nhận thấy \(x=1\) là 1 nghiệm của (1)

Xét hàm \(f\left(x\right)=3^x+2x-5\Rightarrow f'\left(x\right)=3^x.ln3+2>0;\forall x\)

\(\Rightarrow f\left(x\right)\) đồng biến trên R nên \(f\left(x\right)\) có tối đa 1 nghiệm

\(\Rightarrow x=1\) là nghiệm duy nhất của (1)

Vậy pt đã cho có 2 nghiệm thực \(x=\left\{1;2\right\}\)

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 3 2019 lúc 2:24

Theo điều kiện của bài toán, nghiệm của phương trình (2) bằng một phần ba nghiệm của phương trình (1) nên nghiệm đó bằng 2.

Suy ra, phương trình (3) có nghiệm x = 2

Thay giá trị x = 2 vào phương trình này, ta được (a − 2)2 = a + 3.

Ta coi đây là phương trình mới đối với ẩn a. Giải phương trình mới này: (a − 2)2 = a + 3 ⇔ a = 7

Khi a = 7, dễ thử thấy rằng phương trình (a − 2)x = a + 3 có nghiệm x = 2, nên phương trình (2) cũng có nghiệm x = 2.

Bình luận (0)
DS
Xem chi tiết
NH
19 tháng 6 2021 lúc 16:21

Bình luận (0)
NH
19 tháng 6 2021 lúc 16:25

undefined

Bình luận (0)
AN
Xem chi tiết
AN
13 tháng 2 2020 lúc 21:44

Ai làm đc câu nào thì làm giúp mình với ạ, cảm ơn trc:(((

Bình luận (0)
 Khách vãng lai đã xóa
NT
14 tháng 2 2020 lúc 13:01

\(1,3x-5x+5=-8\)

\(\Leftrightarrow-2x+5+8=0\)

\(\Leftrightarrow-2x=-13\)

\(\Leftrightarrow x=\frac{13}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
HP
7 tháng 8 2021 lúc 14:53

a, ĐK: \(x\le-1,x\ge3\)

\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)

\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)

\(\Leftrightarrow x^2-2x-3=1\)

\(\Leftrightarrow x^2-2x-4=0\)

\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)

Bình luận (0)
HP
7 tháng 8 2021 lúc 15:05

b, ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)

Khi đó phương trình tương đương:

\(3t-t^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)

Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm

Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)

Bình luận (0)
HP
7 tháng 8 2021 lúc 15:23

c, ĐK: \(0\le x\le9\)

Đặt \(\sqrt{9x-x^2}=t\left(0\le t\le\dfrac{9}{2}\right)\)

\(pt\Leftrightarrow9+2\sqrt{9x-x^2}=-x^2+9x+m\)

\(\Leftrightarrow-\left(-x^2+9x\right)+2\sqrt{9x-x^2}+9=m\)

\(\Leftrightarrow-t^2+2t+9=m\)

Khi \(m=9,pt\Leftrightarrow-t^2+2t=0\Leftrightarrow\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}9x-x^2=0\\9x-x^2=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=9\left(tm\right)\\x=\dfrac{9\pm\sqrt{65}}{2}\left(tm\right)\end{matrix}\right.\)

Phương trình đã cho có nghiệm khi phương trình \(m=f\left(t\right)=-t^2+2t+9\) có nghiệm

\(\Leftrightarrow minf\left(t\right)\le m\le maxf\left(t\right)\)

\(\Leftrightarrow-\dfrac{9}{4}\le m\le10\)

Bình luận (0)
ND
Xem chi tiết
H24
26 tháng 3 2018 lúc 22:24

a. Nhân hai vế của phương trình (1) với 24, ta được:\(\frac{7x}{8}\)−5(x−9)⇔\(\frac{1}{6}\)(20x+1,5)⇔21x−120(x−9)=4(20x+1,5)⇔21x−120x−80x=6−1080⇔−179x=−1074⇔x=67x8−5(x−9)⇔16(20x+1,5)⇔21x−120(x−9)=4(20x+1,5)⇔21x−120x−80x=6−1080⇔−179x=−1074⇔x=6

Vậy phương trình (1) có một nghiệm duy nhất x = 6.

b. Ta có:

2(a−1)x−a(x−1)=2a+3⇔(a−2)x=a+32(a−1)x−a(x−1)=2a+3⇔(a−2)x=a+3                          (3)

Do đó, khi a = 2, phương trình (2) tương đương với phương trình 0x = 5.

Phương trình này vô nghiệm nên phương trình (2) vô nghiệm.

c. Theo điều kiện của bài toán, nghiệm của phương trình (2) bằng một phần ba nghiệm của phương trình (1) nên nghiệm đó bằng 2. Do (3) nên phương trình (2) có nghiệm x = 2 cũng có nghĩa là phương trình (a−2)2=a+3(a−2)2=a+3 có nghiệm x = 2. Thay giá trị x = 2 vào phương trình này, ta được(a−2)2=a+3(a−2)2=a+3. Ta coi đây là phương trình mới đối với ẩn a. Giải phương trình mới này:

(a−2)2=a+3⇔a=7(a−2)2=a+3⇔a=7

Khi a = 7, dễ thử thấy rằng phương trình (a−2)x=a+3(a−2)x=a+3 có nghiệm x = 2, nên phương trình (2) cũng có nghiệm x = 2.

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 4 2018 lúc 10:07

Ta có: (x + 3)(x + 4) > (x - 2)(x + 9) + 25

Û x2 + 7x + 12 > x2 + 7x - 18 + 25

Û x2 + 7x + 12 - x2 - 7x + 18 - 25 > 0

Û 5 > 0

Vì 5 > 0 (luôn đúng) nên bất phương trình vô số nghiệm x Î R.

Đáp án cần chọn là: B

Bình luận (0)
MS
Xem chi tiết
TT
9 tháng 3 2022 lúc 20:48

undefinedundefinedundefined

Bình luận (0)
HT
Xem chi tiết
EC
1 tháng 10 2021 lúc 20:12

ĐK: \(x\ge1\)

Ta có: \(\sqrt{x^2+6x+9}=x-1\)

      \(\Leftrightarrow x^2+6x+9=x^2-2x+1\)

      \(\Leftrightarrow8x=-8\Leftrightarrow x=-1\left(loại\right)\)

 ⇒ ptvn

Điền vào dấu 3 chấm là số 0 nhé

Bình luận (0)
HP
1 tháng 10 2021 lúc 20:12

\(\sqrt{x^2+6x+9}=x-1\)

<=> \(\sqrt{\left(x+3\right)^2}=x-1\)

<=> \(\left|x+3\right|=x-1\)

<=> \(\left[{}\begin{matrix}x+3=x-1\left(x\ge-3\right)\\x+3=-x+1\left(x< -3\right)\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x-x=-1+3\\x+x=1-3\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}0=2\left(VLí\right)\\2x=-2\end{matrix}\right.\)

<=> 2x = -2

<=> x = -1

Vậy nghiệm của phương trình là \(S=\left\{-1\right\}\)

Bình luận (1)