Tìm giá trị của x để 22 x ¯ ⋮ 11
Cho biểu thức: B = x + 2 2 − x − 2 − x x + 2 − 4 x 2 x 2 − 4 : 2 2 − x − x + 3 2 x − x 2 .
a) Rút gọn biểu thức và tìm các giá trị của x để biểu thức xác định.
b) Tìm các giá trị của x để B < 0.
a) Rút gọn thu được B = 4 x ( 2 + x ) ( 2 − x ) ( 2 + x ) : x − 3 x ( 2 − x ) = 4 x 2 x − 3 với x ≠ ± 2 ; x ≠ 0 ; x ≠ 3
b) 4 x 2 x − 3 < 0 ⇔ x − 3 < 0 ⇔ x < 3 ;
Kết hợp điều kiện được 0 < x < 3; x ≠ ± 2.
x-5/x-11
tìm các giá trị của x để A có giá trị nguyên
\(A=\dfrac{x-5}{x-11}=1+\dfrac{6}{x-11}\)
Để `A` có giá trị nguyên thì \(\dfrac{6}{x-11} \in Z\)
\(=>x-11 \in Ư_{6}\)
Mà \(Ư_{6}=\){\(\pm 1 ;\pm 2;\pm 3;\pm 6\)}
x-11 | -1 | 1 | -2 | 2 | -3 | 3 | -6 | 6 |
x | 10 | 12 | 9 | 13 | 8 | 14 | 5 | 17 |
\(=>x \in \){`10;12;9;13;8;14;5;17`}
Cho các biểu thức: A = 6 x + 2 x và B = x x - 4 + 2 2 - x + 1 x + 2 với x > 0 và x ≠ 4
a, Tính giá trị của A khi x=1/4 và rút gọn B
b, Đặt M = A B . Hãy tìm các giá trị của x để M > 1
c, Tìm các giá trị của x nguyên để M nguyên
Tìm được A = 24 5 và B = - 6 x - 4 với x > 0 và x ≠ 4 ta tìm được 0 < x < 1
Ta có M = - 1 + 2 x ∈ Z => x ∈ Ư(2) từ đó tìm được x=1
A = x+1/2x-2 + 1/2- 2xmũ2 và B = 2x+2/x+2
1 tính giá trị của B khi giá trị tuyệt đối của x = 2
2 rút gọn a
3 đặt p = A x B tìm x để giá trị tuyệt đối của P = 3
Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn. Viết như thế này khó quan sát quá.
Tìm tổng tất cả các giá trị nguyên của m để phương trình 4 1 + x + 4 1 - x = ( m + 1 ) ( 2 2 + x - 2 2 - x ) + 16 - 8 m có nghiệm trên 0 ; 1
A. 2.
B. 5.
C. 4.
D. 3.
Đáp án D.
Phương trình tương đương với
Đặt 2 x - 1 2 x = t → 4 x + 1 4 x = t 2 + 2 . Xét hàm số t ( x ) = 2 x - 1 2 x trên 0 ; 1 .
Đạo hàm t ' ( x ) = 2 x . ln 2 + ln 2 2 x > 0 , ∀ x ∈ 0 ; 1 ⇒ Hàm số t ( x ) luôn đồng biến trên 0 ; 1 . Suy ra min x ∈ 0 ; 1 t ( x ) = t ( 0 ) = 0 và max x ∈ 0 ; 1 t ( x ) = t ( 1 ) = 3 2 . Như vậy t ∈ 0 ; 3 2 .
Phương trình (1) có dạng:
Phương trình (1) có nghiệm t ∈ 0 ; 1 ⇔ phương trình ẩn t có nghiệm t ∈ 0 ; 3 2 ⇔ 0 ≤ m - 1 ≤ 3 2 ⇔ 1 ≤ m ≤ 5 2 . Mà m ∈ ℤ nên m ∈ 1 ; 2 . Tổng tất cả các giá trị nguyên của m bằng 3.
Tìm các giá trị nguyên của x để biểu thức C = \(\frac{22-3x}{4-x}\) có giá trị lớn nhất
Ta có
\(C=\frac{12-3x}{4-x}+\frac{10}{4-x}=3+\frac{10}{4-x}\)
C lớn nhất <=> \(\frac{10}{4-x}\) lớn nhất <=> 4 - x bé nhất >0
Mà x nguyên
=>x=1
Thay vào ta có \(C=\frac{22-3.1}{4-1}=\frac{19}{4}\)
Vậy MAX(C)=19/4 khi x=1
C=\(\frac{22-3x}{4-x}=3+\frac{10}{4-x}\)để C lớn nhất thì \(\frac{10}{4-x}\) lớn nhất
mà x nguyên=> 4-x=1=> x=3
vậy GTLN của C=13 khi x=1
Tìm các giá trị nguyên của x để biểu thức C = \(\frac{22-3x}{4-x}\) có giá trị lớn nhất
Điều kiện : \(x\ne4\)
Biểu diễn : \(C=\frac{22-3x}{4-x}=\frac{3\left(4-x\right)+10}{4-x}=\frac{10}{4-x}+3\)
Ta có C đạt giá trị lớn nhất \(\Leftrightarrow\frac{10}{4-x}\)đạt giá trị lớn nhất \(\Leftrightarrow4-x\)đạt giá trị nhỏ nhất
Đến đây ta xét các trường hợp :
1. Với \(x>4\Rightarrow4-x< 0\Rightarrow\frac{10}{4-x}< 0\)
2. Với \(0\le x\le3\) \(\Rightarrow\frac{5}{2}\le\frac{10}{4-x}\le10\)
3. Với \(x< 0\), xét \(f\left(x\right)=4-x\) có giá trị càng tăng khi x càng giảm (x < 0) , do đó f(x) nhỏ nhất tại x = -1
\(\Rightarrow\frac{10}{4-x}=2\)
So sánh các trường hợp , được \(MaxC=13\Leftrightarrow x=3\)
\(\frac{22-3x}{4-x}=\frac{12-3x+10}{4-x}=3\frac{10}{4-x}\)
muốn C có giá trị lớn nhất thì 4-x phải đạt giá trị nhỏ nhất có thể và 4-x phải là số nguyên dương
=> 4-x>0 mà x là số nguyên nên giá trị của 4-x nhỏ nhất có thêr để C lớn nhất là 1
=> x=3
nếu x=3 , ta có:
10/4-x=10/4-3=10
vậy với x=3 thì C đạt GTLN và =10
Tìm các giá trị nguyên của x để biểu thức C = \(\frac{22-3x}{4-x}\) có giá trị lớn nhất
Ta có: 4 - x \(\ne\)0 \(\Leftrightarrow\) x \(\ne\)4
C = \(\frac{12-3x+10}{4-x}\)=\(\frac{3\left(4-x\right)}{4-x}+\frac{10}{4-x}\)= \(3+\frac{10}{4-x}\)
Để C đạt GTLN thì \(\frac{10}{4-x}\)phải là GTLN, mà 10 là số nguyên dương nên 4 - x phải nguyên dương nhỏ nhất.
\(\Rightarrow\)4 - x = 1
\(\Leftrightarrow\)x = 3
Khi do: C = 13
Vậy GTLN của C =13 khi x = 3
Tìm các giá trị nguyên của x để biểu thức A=\(\dfrac{22-3x}{4-x}\)có giá trị lớn nhất.
MN giúp mình với mình đang cần gấp lắm
A = \(\dfrac{22-3x}{4-x}\)
A = \(\dfrac{3.\left(4-x\right)+10}{4-x}\)
A = 3 + \(\dfrac{10}{4-x}\)
A lớn nhất khi \(\dfrac{10}{4-x}\) lớn nhất. Vì 10 > 0; \(x\) \(\in\) Z nên \(\dfrac{10}{4-x}\) lớn nhất khi
4 - \(x\) = 1 ⇒ \(x\) = 4 - 1 ⇒ \(x\) = 3
Vậy Amin = 3 + \(\dfrac{10}{1}\) = 13 khi \(x\) =3
Kết luận giái trị lớn nhất của biểu thức là 13 xảy ra khi \(x\) = 3
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng Δ : x - 1 1 = y + 2 2 = z + 1 - 1 và mặt phẳng ( α ) :mx+10y-5z+1=0. Tìm tất cả các giá trị của tham số m để Δ ⊥ ( α ) .
A. m=-25.
B. m=5.
C. m=25.
D. m=-5.