Những câu hỏi liên quan
TN
Xem chi tiết
NT
29 tháng 6 2023 lúc 14:05

1:

Δ=(2m-4)^2-4(m^2-3)

=4m^2-16m+16-4m^2+12=-16m+28

Để PT có hai nghiệm phân biệt thì -16m+28>0

=>-16m>-28

=>m<7/4

2: x1^2+x2^2=22

=>(x1+x2)^2-2x1x2=22

=>(2m-4)^2-2(m^2-3)=22

=>4m^2-16m+16-2m^2+6=22

=>2m^2-16m+22=22

=>2m^2-16m=0

=>m=0(nhận) hoặc m=8(loại)

3: A=x1^2+x2^2+2021

=2m^2-16m+2043

=2(m^2-8m+16)+2011

=2(m-4)^2+2011>=2011

Dấu = xảy ra khi m=4

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 1 2020 lúc 12:13

Ta có

x + 1 4 − y 2 = x + y + 1 x − 2 2 + y − 1 3 = x + y − 1

⇔ x + 1 − 2 y = 4 x + 4 y + 4 3 x − 6 + 2 y − 2 = 6 x + 6 y − 6

⇔ 3 x + 6 y = − 3 3 x + 4 y = − 2 ⇔ y = − 1 2 x = 0

Thay x = 0; y = − 1 2 vào phương trình (m + 2)x + 7my = m – 225 ta được:

(m + 2).0 + 7m − 1 2 = m – 225 ⇔ 9 2 m = 225 ⇔ m = 50

Đáp án: C

Bình luận (0)
NH
Xem chi tiết
NT
13 tháng 5 2023 lúc 22:40

Thay x=3 vào pt, ta được:

9-3(m-2)-m=13

=>9-m-3m+6=13

=>-4m+15=13

=>-4m=-2

=>m=1/2

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 7 2019 lúc 18:07

Ta có: 9x2 − 15x + 3 = 0 (a = 9; b = −15; c = 3)

⇒ ∆ = b2 – 4ac = (−15)2 – 4.9.3 = 117 > 0

nên phương trình có hai nghiệm phân biệt

Đáp án cần chọn là: C

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 12 2018 lúc 12:32

Ta có x2 − 2 2 x + 2 = 0 (a = 1; b = −2 2 ; c = 2)

⇒ ∆ = b2 – 4ac = (2 2 )2 – 4.1.2 = 0

nên phương trình có nghiệm kép

x 1 = x 2 = − b 2 a = 2 2 2 = 2

Đáp án cần chọn là: A

Bình luận (0)
NN
Xem chi tiết
LP
Xem chi tiết
PH
Xem chi tiết
H24
5 tháng 6 2023 lúc 10:18

\(x^2-\left(2m+1\right)x+m^2+1=0\)

\(\Delta=b^2-4ac=\left[-\left(2m+1\right)\right]^2-4\left(m^2+1\right)\)

                      \(=\left(4m^2+4m+1\right)-4m^2-4\)

                      \(=4m-3\)

Để pt có 2 nghiệm phân biệt \(x_1,x_2\) thì \(\Delta>0\Leftrightarrow4m-3>0\Leftrightarrow4m>3\Leftrightarrow m>\dfrac{3}{4}\)

Theo Vi ét, ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+1\\x_1x_2=\dfrac{c}{a}=m^2+1\end{matrix}\right.\)

Ta có : \(\left(x_1+1\right)^2+\left(x_2+1\right)^2=13\)

\(\Leftrightarrow x_1^2+2x_1+1+x_2^2+2x_2+1=13\)

\(\Leftrightarrow\left(x_1^2+x_1^2\right)+\left(2x_1+2x_2\right)+2=13\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)-11=0\)

\(\Leftrightarrow\left(2m+1\right)^2-2\left(m^2+1\right)+2\left(2m+1\right)-11=0\)

\(\Leftrightarrow4m^2+4m+1-2m^2-2+4m+2-11=0\)

\(\Leftrightarrow2m^2+8m-10=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\left(tm\right)\\m=-5\left(ktm\right)\end{matrix}\right.\)

Vậy m = 1 thì thỏa mãn đề bài.

Bình luận (0)
KL
5 tháng 6 2023 lúc 10:23

∆ = [-(2m + 1)]² - 4.1.(m² + 1)

= 4m² + 4m + 1 - 4m² - 4

= 4m - 3

Phương trình có hai nghiệm phân biệt khi ∆ > 0

⇔ 4m - 3 > 0

⇔ m > 3/4

Theo Viét ta có:

x₁ + x₂ = 2m + 1

x₁x₂ = m² + 1

Ta có:

(x₁ + 1)² + (x₂ + 1)² = 13

⇔ x₁² + 2x₁ + 1 + x₂² + 2x₂ + 1 = 13

⇔ (x₁ + x₂)² - 2x₁x₂ + 2(x₁ + x₂) + 2 = 13

⇔ (2m + 1)² - 2(m² + 1) + 2(2m + 1) + 2 = 13

⇔ 4m² + 4m + 1 - 2m² - 2 + 4m + 2 + 2 - 13 = 0

⇔ 2m² + 8m - 10 = 0

Phương trình có hai nghiệm:

m = 1 (nhận)

m = -5 (loại)

Vậy m = 1 thì phương trình có hai nghiệm thỏa mãn (x₁ + 1)² + (x₂ + 1)² = 13

Bình luận (0)
NT
5 tháng 6 2023 lúc 10:10

Δ=(2m+1)^2-4(m^2+1)

=4m^2+4m+1-4m^2-4=4m-3

Để phương trình có hai nghiệm phân biệt thì 4m-3>0

=>m>3/4

(x1+1)^2+(x2+1)^2=13

=>x1^2+x2^2+2(x1+x2)+2=13

=>(x1+x2)^2-2x1x2+2(x1+x2)=11

=>(2m+1)^2-2(m^2+1)+2(2m+1)=11

=>4m^2+4m+1-2m^2-2+4m+2=11

=>4m^2+6m-10=0

=>m=1 hoặc m=-5/2(loại)

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 1 2020 lúc 11:07

Phương trình 5 x 2  – x + 2 = 0 có a = 5, b = -1, c = 2

Ta có:  ∆ =  b 2  – 4ac =  - 1 2  – 4.5.2 = 1 – 40 = -39 < 0

Vậy phương trình vô nghiệm.

Bình luận (0)