Đưa các thừa số ra ngoài dấu căn
a) 4 a - 3 2 với a < 3
Đưa thừa số ra ngoài dấu căn
a.
\(\left(\sqrt{28}-5\sqrt{35}+7\sqrt{112}\right)2\sqrt{7}\)
b. \(\left(\sqrt{72}-3\sqrt{24}+5\sqrt{8}\right)\sqrt{2}+4\sqrt{27}\)
a) \(\left(\sqrt{28}-5\sqrt{35}+7\sqrt{112}\right)2\sqrt{7}=2\sqrt{196}-10\sqrt{245}+14\sqrt{784}\)
\(=28-10\sqrt{49.5}+392=420-70\sqrt{5}\)
b) \(\left(\sqrt{72}-3\sqrt{24}+5\sqrt{8}\right)\sqrt{2}+4\sqrt{27}=\sqrt{144}-3\sqrt{48}+5\sqrt{16}+4\sqrt{9.3}\)
\(=12-3\sqrt{16.3}+20+12\sqrt{3}=32-12\sqrt{3}+12\sqrt{3}=32\)
đưa thừa số ra ngoài dấu căn
căn bậc hai của 4(a-3)^2 với a<3
Viết các số hoặc biểu thức dưới dấu căn thành dạng tích rồi đưa 1 thừa số ra ngoài dấu căn.
√108(a + 7)^2
√81a^4b^7
√16a^5b^3 (a ≥ 0, b ≤ 0)
a: \(\sqrt{36\cdot3\cdot\left(a+7\right)^2}=6\sqrt{3}\left|a+7\right|\)
b: \(\sqrt{9^2\cdot a^4\cdot b^3\cdot b^3\cdot b}=9a^2b^3\sqrt{b}\)
c: Nếu đk xác định như này thì \(C=\sqrt{16a^5b^3}\) chỉ xác định với a=b=0 thôi nha bạn
=>C=0
Câu 4: Đưa thừa số ra ngoài dấu căn:
a. \(\sqrt{72a^2b^4}\) với a ≥ 0
b. \(\sqrt{27a^3b^2}\) với a ≥ 0 và b < 0
\(a,=6\left|a\right|b^2\sqrt{2}=6ab^2\sqrt{2}\\ b,=3\left|ab\right|\sqrt{3a}=-3ab\sqrt{3a}\)
\(\sqrt{48.45}\) Đưa thừa số ra ngoài dấu căn:
\(\sqrt{225.17}\)
\(\sqrt{a^3b^7}với\) \(a\ge0;b\ge0\)
\(\sqrt{x^5\left(x-3\right)^2}\) với \(x>0\)
\(\sqrt{48\cdot45}=12\sqrt{15}\\ \sqrt{225\cdot17}=15\sqrt{17}\\ \sqrt{a^3b^7}=\left|ab^3\right|\sqrt{ab}=ab^3\sqrt{ab}\\ \sqrt{x^5\left(x-3\right)^2}=\left|x^2\left(x-3\right)\right|\sqrt{x}=x^2\left(x-3\right)\sqrt{x}\)
\(\sqrt{48\cdot45}=4\sqrt{3}\cdot3\sqrt{5}=12\sqrt{15}\)
\(\sqrt{225\cdot17}=15\sqrt{17}\)
đưa thừa số ra ngoài dấu căn
\(\frac{2xy^2}{3ab}\sqrt{\frac{9a^3b^4}{8xy^3}}\)với a,b,x,y>0
\(\frac{2xy^2}{3ab}\sqrt{\frac{9a^3b^4}{8xy^3}}=\frac{2xy^2}{3ab}\frac{3\sqrt{a^2.a}\sqrt{\left(b^2\right)^2}}{2\sqrt{2xy^2.y}}\)
\(=\frac{2xy^2}{3ab}\frac{3a\sqrt{a}b^2}{2y\sqrt{2xy}}=\frac{6xy^2ab^2\sqrt{a}}{6aby\sqrt{2xy}}=\frac{bxy\sqrt{a}}{\sqrt{2xy}}\)
\(=\frac{bxy\sqrt{2axy}}{2xy}=\frac{b\sqrt{2axy}}{2}\)
đưa thừa số ra ngoài dấu căn :
\(\sqrt{18b^3\left(1-2a\right)^2}\)( a≥\(\dfrac{1}{2}\); b ≥0)
\(\sqrt{18b^3\cdot\left(1-2a\right)^2}\)
\(=3\sqrt{2}\cdot b\sqrt{b}\cdot\left|1-2a\right|\)
\(=3\sqrt{2}\left(2a-1\right)\cdot b\sqrt{b}\)
Đưa thừa số ra ngoài dấu căn:
a) $\sqrt{28 x^{4} y^{2}}$ với $y \leq 0$;
b) $\sqrt{63 a^{2} b^{4}}$ với $a \geq 0$;
c) $\sqrt{147(a-1)^{3}}$;
d) $\sqrt{192(y+2)^{5}}$.
a, -2x^2y căn 7
b, ab^2 căn 63
c, a-1 căn 147a-147
d, y+2 nhân căn [192 nhân (y+2)^3]
a)-2x²y√7
b) 3ab²√7
c) 7(a-1)√3(a-1)
d) 8(y+2)²√3(y+2)
Đưa thừa số ra ngoài dấu
√(72a2b4 ) với a < 0.
√(72a2b4 ) = √((6ab2)2.2) = √2 |6ab2 | = -6√2ab2 (do a < 0)