Những câu hỏi liên quan
VN
Xem chi tiết
NL
31 tháng 8 2021 lúc 20:48

Em kiểm tra lại mẫu số của biểu thức c, chắc chắn đề sai

Bình luận (1)
NL
1 tháng 9 2021 lúc 15:30

Chia 2 vế cho \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\) BĐT trở thành:

\(\dfrac{1}{a^4\left(b+1\right)\left(c+1\right)}+\dfrac{1}{b^4\left(a+1\right)\left(c+1\right)}+\dfrac{1}{c^4\left(a+1\right)\left(b+1\right)}\ge\dfrac{3}{4}\)

Đặt \(\left(a;b;c\right)=\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)\) \(\Rightarrow xyz=1\)

\(\dfrac{1}{a^4\left(b+1\right)\left(c+1\right)}=\dfrac{x^4}{\left(1+\dfrac{1}{y}\right)\left(1+\dfrac{1}{z}\right)}=\dfrac{x^4yz}{\left(y+1\right)\left(z+1\right)}=\dfrac{x^3}{\left(y+1\right)\left(z+1\right)}\)

Do đó BĐT trở thành:

\(\dfrac{x^3}{\left(y+1\right)\left(z+1\right)}+\dfrac{y^3}{\left(x+1\right)\left(z+1\right)}+\dfrac{z^3}{\left(x+1\right)\left(y+1\right)}\ge\dfrac{3}{4}\)

Một bài toán quen thuộc

Bình luận (0)
MN
Xem chi tiết
PT
30 tháng 8 2018 lúc 17:09

\(A+1=\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)

\(=\left(ab+bc+ca\right)\left(a+b+c\right)-abc+abc\)

\(=\left(ab+bc+ca\right)\left(a+b+c\right)\)

\(\ge\left(a+b+c\right).3\sqrt[3]{a^2b^2c^2}=3\left(a+b+c\right)\)            Do   abc=1

Bình luận (0)
TH
Xem chi tiết
NN
21 tháng 2 2022 lúc 17:57

Ta đổi chiều bất đẳng thức, khi đó bất đẳng thức cần chứng minh tương đương với:

\(18\left(\frac{a^3}{1+a^3}+\frac{b^3}{1+b^3}+\frac{c^3}{1+c^3}\right)+\left(a+b+c\right)^3\ge54\)

Để ý abc=1 thì \(\frac{a^3}{1+a^3}=\frac{a^3}{abc+a^3}=\frac{a^2}{bc+a^2}\)nên bất đẳng thức trên thành:

\(18\left(\frac{a^2}{bc+a^2}+\frac{b^2}{ca+b^2}+\frac{c^2}{ab+c^2}\right)+\left(a+b+c\right)^3\ge54\)

Lại cũng từ \(abc=1\) ta có \(\left(a+b+c\right)^3\ge27abc=27\), do đó ta sẽ chứng minh được khi ta chỉ ra được:

\(\frac{a^2}{bc+a^2}+\frac{b^2}{ca+b^2}+\frac{c^2}{ab+c^2}\ge\frac{3}{2}\)

Vế trái của đánh giá trên áp dụng bất đẳng thức Bunhiacopxki dạng phân thức. Lúc này ta được:

\(\frac{a^2}{bc+a^2}+\frac{b^2}{ca+b^2}+\frac{c^2}{ab+c^2}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)

Tuy nhiên để đến khi \(a=b=c=1\) thì:

\(\frac{18\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}=\left(a+b+c\right)^3=27\)

Ta sử dụng bất đẳng thức Cauchy dạng \(x+y\ge2\sqrt{xy}\), khi đó ta được:

\(\frac{18\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}+\left(a+b+c\right)^3\ge\sqrt{\frac{18\left(a+b+c\right)^5}{a^2+b^2+c^2+ab+bc+ca}}\)

Chứng minh sẽ hoàn tất nếu ta chỉ được:

\(\sqrt{\frac{18\left(a+b+c\right)^5}{a^2+b^2+c^2+ab+bc+ca}}\ge54\Leftrightarrow\left(a+b+c\right)^5\ge\frac{81}{2}\left(a^2+b^2+c^2+ab+bc+ca\right)\)

Vậy theo bất đẳng thức Cauchy ta được:

\(\left(a+b+c\right)^6=\left[\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)+\left(ab+bc+ca\right)\right]^3\)

\(\ge27\left(a+b+c\right)^2\left(ab+bc+ca\right)^2\ge81abc\left(a^2+b^2+c^2\right)\left(a+b+c\right)\)

\(=81\left(a^2+b^2+c^2\right)\left(a+b+c\right)\)

Khi đó ta được:

\(\left(a+b+c\right)^5\ge81\left(a^2+b^2+c^2\right)\)

Vậy ta cần chỉ ra rằng:

\(2\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+ab+bc+ca\)

Vậy bất đẳng thức trên tương đương với \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\), là một bất đẳng thức hiển nhiên đúng.

Vậy bất đẳng thức được chứng minh, dấu đẳng thức xảy ra khi \(a=b=c=1\)

Bình luận (0)
 Khách vãng lai đã xóa
LL
Xem chi tiết
ND
Xem chi tiết
H24
20 tháng 4 2020 lúc 6:51

Ta có : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Leftrightarrow\left(3+\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)< 10\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{a}+\frac{a}{c}< 7\)

\(\Leftrightarrow\frac{a+c}{b}+\frac{b+a}{c}+\frac{c+b}{a}< 7\)

Không giảm tổng quá .Giả sử a là cạnh lớn nhất .Giả b + c < a => 0 < \(\frac{b+c}{a}\)

\(\Rightarrow\frac{a+c}{b}+\frac{b+a}{c}+\frac{c+b}{a}>\frac{2c+b}{b}+\frac{2b+c}{c}+\frac{b+c}{a}\)( không chắc lắm ) 

\(\frac{2c}{b}+\frac{2b}{c}+\frac{b+c}{a}+2\)

=\(\frac{2\left(b+c\right)^2}{bc}+\frac{b+c}{a}-2>7\left(VL\right)\)

=>b+ c > a => a ; b ; c là 3 cạnh tam giác ( đpcm ) 

Bình luận (0)
 Khách vãng lai đã xóa
LD
Xem chi tiết
VN
Xem chi tiết
NL
5 tháng 8 2021 lúc 21:09

\(abc=1\) nên tồn tại các số dương x;y;z sao cho \(\left(a;b;c\right)=\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\)

BĐT cần chứng minh tương đương:

\(\dfrac{y}{x+2y}+\dfrac{z}{y+2z}+\dfrac{x}{z+2x}\le1\)

\(\Leftrightarrow\dfrac{2y}{x+2y}-1+\dfrac{2z}{y+2z}-1+\dfrac{2x}{z+2x}-1\le2-3\)

\(\Leftrightarrow\dfrac{x}{x+2y}+\dfrac{y}{y+2z}+\dfrac{z}{z+2x}\ge1\)

Điều này đúng do:

\(VT=\dfrac{x^2}{x^2+2xy}+\dfrac{y^2}{y^2+2yz}+\dfrac{z^2}{z^2+2xz}\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=1\)

Bình luận (1)
VG
Xem chi tiết
H24
27 tháng 3 2019 lúc 6:28

b) \(\left(1+a\right).\frac{1}{1+b^2}=\left(1+a\right)\left(1-\frac{b^2}{1+b^2}\right)\)

\(\ge\left(1+a\right)\left(1-\frac{b^2}{2b}\right)=1+a-\frac{ab+b}{2}\)

Thiết lập hai BĐT còn lại tương tự và cộng theo vế được:

\(VT\ge6-\frac{ab+bc+ca+3}{2}\ge6-\frac{\frac{\left(a+b+c\right)^2}{3}+3}{2}\)

\(=6-\frac{3+3}{2}=3^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi a = b = c = 1

Bình luận (0)
VG
Xem chi tiết
LL
Xem chi tiết