Rút gọn B = x +3/3 . (√) 18/50(x² + 6x +9) với x
rút gọn
9(x+1)^2-16 (y+3)^2
tìm x
6x(x-1)=x+2 x^3+x^2-4x=189(x + 1)² - 16(y + 3)²
= 9(x² + 2x + 1) - 16(y² + 6y + 9)
= 9x² + 18x + 9 - 16y² - 96y - 144
= 9x² - 16y² + 18x - 96y - 135
Rút gọn biểu thức:
A=x(x+y)2-x(x-y). B=(2x-3)(4x2+6x+9)-(2x+3)(4x2-6x+9)(x+3)3-(x-3)3-18x2-18A = x(x + y)2 - x(x - y)
= x[(x + y)2 - (x - y)]
B = (2x - 3)(4x2 + 6x + 9) - (2x + 3)(4x2 - 6x + 9)
= 8x3 - 27 - 8x3 - 27
= - 54
C = (x + 3)3 - (x - 3)3 - 18x2 - 18
= x3 + 9x2 + 27x + 27 - x3 + 9x2 - 27x + 27 - 18x2 - 18
= 36
Rút gọn phân thức:
a) x 2 + 5 x + 6 x 2 + 6 x + 9 với x ≠ − 3 ;
b) x 2 + xy − x − y x 2 − xy − x + y với x ≠ 1 và x ≠ y .
\(M=\frac{\left(x-3\right)^2}{2x^2-6x}\left(1-\frac{6x+18}{x^2-9}\right)\)
Rút gọn biểu thức
ĐKXĐ \(\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)
\(M=\frac{\left(x-3\right)^2}{2x\left(x-3\right)}\left(1-\frac{6\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\right)\)
\(=\frac{x-3}{2x}\left(1-\frac{6}{x-3}\right)\)
\(=\frac{x-3}{2x}.\frac{x-9}{x-3}=\frac{x-9}{2x}\)
\(M=\frac{\left(x-3\right)^2}{2x^2-6x}\left(1-\frac{6x+18}{x^2-9}\right)\left(x\ne\pm3;x\ne0\right)\)
\(\Leftrightarrow M=\frac{\left(x-3\right)^2}{2x\left(x-3\right)}\left(1-\frac{6\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\right)\)
\(\Leftrightarrow M=\frac{x-3}{2x}\cdot\left(1-\frac{6}{x-3}\right)\)
\(\Leftrightarrow M=\frac{x-3}{2x}\cdot\frac{x-9}{x-3}\)
\(\Leftrightarrow M=\frac{x-9}{2x}\)
Vậy với \(x\ne\pm3;x\ne0\)thì \(M=\frac{x-9}{2x}\)
x2 m vuông
Rút Gọn: B= (2x-3)(4x^2+6x+9)-(x+1)^2-(x-2)^3
\(B=\left(2x-3\right)\left(4x^2+6x+9\right)-\left(x+1\right)^2-\left(x-2\right)^3\)
\(=8x^3-27-x^2-2x-1-x^3+6x^2-12x+8\)
\(=7x^3+5x^2-14x-20\)
Cho biểu thức B = \(\left(\frac{x+3}{x-3}+\frac{2x^2-6}{9-x^2}+\frac{x}{x+3}\right):\frac{6x-12}{2x^2-18}\)
a. Tìm tập xác định và rút gọn B
b. Tìm giá trị của B với |x+1 | = 2
c. Tìm giá trị nguyên của x để B nhận giá trị nguyên.
A) Cho xy/ x^2+y^2. Hãy rút gọn phân thức P= X^3+X^2-6X/ X^2+2XY+ Y^2.
B) với giá trị của biến x, phân thức A= x-3/ x^3 - x^2-18 có giá trị lớn nhất.
rút gọn x - 3 - căn x^2 -6x +9
\(x-3-\sqrt{x^2-6x+9}\left(1\right)=x-3-\sqrt{\left(x-3\right)^2}=x-3-\left|x-3\right|\)
TH1: \(x< 3\)
\(\left(1\right)=x-3+x-3=2x-6\)
TH2: \(x\ge3\)
\(\left(1\right)=x-3-x+3=0\)
\(x-3-\sqrt{x^2-6x+9}\)
\(=x-3-\left|x-3\right|\)
\(=\left[{}\begin{matrix}x-3-x+3=0\left(x\ge3\right)\\x-3+x-3=2x-6\left(x< 3\right)\end{matrix}\right.\)
cho − 3 bé hơn bằng x bé hơn bằng 3 rút gọn biểu thức T= \(\sqrt{x^2-6x+9}+\sqrt{x^2+6x+9}\) ta được
Ta có: \(T=\sqrt{x^2-6x+9}+\sqrt{x^2+6x+9}\)
\(=\left|x-3\right|+\left|x+3\right|\)
\(=3-x+x+3\)
\(=6\)