4x=-11y và x mũ 2 - 3y mũ 2 = 803
tìm x,y z biết
4x=-11y x^3-3y^2=803
7x=10y=12z x+y+z=514
bài 1
15x mũ 2 y mũ 2 z :3xyz
3x mũ 2 .(5x mũ 2-4x+3)
(2x mũ 2 -3x):(x-4)
-5xy (3x mũ 2y -5xy +y mũ 2)
(4 phấn 3y mũ 3 +2 phấn 3y mũ 2-1 phần 3).-3y mũ 2
(-2x mũ 3-1 phần 4y-4yz).8xy mũ 2
Bài 1:
a) Ta có: \(\left(15x^2\cdot y^2\cdot z\right):3xyz\)
\(=\dfrac{15x^2y^2z}{3xyz}\)
\(=5xy\)
b) Ta có: \(3x^2\cdot\left(5x^2-4x+3\right)\)
\(=3x^2\cdot5x^2-3x^2\cdot4x+3x^2\cdot3\)
\(=15x^4-12x^3+9x^2\)
c) Ta có: \(\left(2x^2-3x\right):\left(x-4\right)\)
\(=\dfrac{2x^2-8x+5x-20+20}{x-4}\)
\(=\dfrac{2x\left(x-4\right)+5\left(x-4\right)+20}{x-4}\)
\(=2x+5+\dfrac{20}{x-4}\)
d) Ta có: \(-5xy\cdot\left(3x^2y-5xy+y^2\right)\)
\(=-5xy\cdot3x^2y+5xy\cdot5xy-5xy\cdot y^2\)
\(=-15x^3y^2+25x^2y^2-5xy^3\)
phân tích đa thức sau thành nhân tử
f , x mũ 3 - 4x mũ 2 - 9x + 36
g, 4x - 4y + x mũ 2 - 2xy + y mũ 2
h, x mũ 4 + x mũ 3 + x mũ 2 - 1
i, x mũ 2 - y mũ 2 - 4x - 4y
j, x mũ 3 - y mũ 3 - 3x + 3y
f) = x2( x - 4 ) - 9( x - 4 ) = ( x - 4 )( x - 3 )( x + 3 )
g) = 4( x - y ) + ( x - y )2 = ( x - y )( x - y + 4 )
h) = x3( x + 1 ) + ( x - 1 )( x + 1 ) = ( x + 1 )( x3 + x - 1 )
i) = ( x - y )( x + y ) - 4( x + y ) = ( x + y )( x - y - 4 )
j) = ( x - y )( x2 + xy + y2 ) - 3( x - y ) = ( x - y )( x2 + xy + y2 - 3 )
Trả lời:
f, x3 - 4x2 - 9x + 36 = ( x3 - 4x2 ) - ( 9x - 36 ) = x2 ( x - 4 ) - 9 ( x - 4 ) = ( x - 4 )( x2 - 9 ) = ( x - 4 )( x - 3 )( x + 3 )
g, 4x - 4y + x2 - 2xy + y2 = ( 4x - 4y ) + ( x2 - 2xy + y2 ) = 4 ( x - y ) + ( x - y )2 = ( x - y ) ( 4 + x - y )
h, x4 + x3 + x2 - 1 = ( x4 + x3 ) + ( x2 - 1 ) = x3 ( x + 1 ) + ( x - 1 )( x + 1 ) = ( x + 1 )( x3 + x - 1 )
i, x2 - y2 - 4x - 4y = ( x2 - y2 ) - ( 4x + 4y ) = ( x - y )( x + y ) - 4 ( x + y ) = ( x + y )( x - y - 4 )
j, x3 - y3 - 3x + 3y = ( x3 - y3 ) - ( 3x - 3y ) = ( x - y )( x2 + xy + y2 ) - 3 ( x - y ) = ( x - y )( x2 + xy + y2 - 3 )
f) x3-4x2-9x+36
=x2(x-4)-9(x-4)
=(x-4)(x2-9)
=(x-4)(x-3)(x+3)
g) 4x-4y+x2-2xy+y2
=4(x-y)+(x-y)2
=(x-y)(4+x-y)
h) x4+x3+x2-1
=x3(x+1)+(x-1)(x+1)
=(x+1)(x3+x-1)
i) x2-y2-4x-4y
=(x-y)(x+y)-4(x+y)
=(x+y)(x-y-4)
j) x3-y3-3x+3y
=(x-y)(x2+xy+y2)-3(x-y)
=(x-y)(x2+xy+y2-3)
#H
bài 3 ; áp dụng hằng đẳng thức để thực hiện phép chia
a, ( 4x mũ 2 + 12xy + 9y mũ 2 ) : ( 2x + 3y )
d, ( x mũ 2 + 6xy + 9y mũ 2 ) : ( x + 3y )
e, ( 64y mũ 3 - 27 ) : ( 4y - 3 )
a: \(\left(4x^2+12xy+9y^2\right):\left(2x+3y\right)=\left(2x+3y\right)^2:\left(2x+3y\right)=2x+3y\)
d: \(\left(x^2+6xy+9y^2\right):\left(x+3y\right)=\left(x+3y\right)^2:\left(x+3y\right)=x+3y\)
e: \(\dfrac{64y^3-27}{4y-3}=\dfrac{\left(4y-3\right)\left(16y^2+12y+9\right)}{4y-3}=16y^2+12y+9\)
a, \(4x^2+12xy+9y^2=\left(2x+3y\right)^2\)
\(\Rightarrow\left(4x^2+12xy+9y^2\right):\left(2x+3y\right)\)
\(=\left(2x+3y\right)^2:\left(2x+3y\right)\\ =2x+3y\)
b,\(x^2+6xy+9y^2=\left(x+3y\right)^2\)
\(\Rightarrow\left(x^2+6xy+9y^2\right):\left(x+3y\right)\\ =\left(x+3y\right)^2:\left(x+3y\right)\\ =x+3y\)
c, \(64y^3-27=\left(4y-3\right)\left(16y^2+12y+9\right)\)
\(\Rightarrow\left(64x^3-27\right):\left(4y-3\right)\\ =\left[\left(4y-3\right)\left(16x^2+12x+9\right)\right]:\left(4y-3\right)\\ =16x^2+12x+9\)
phân tích đa thức sau thành nhân tử
1, x mũ 2 - y mũ 2 + 4x + 4
2, x mũ 2 + 2x - 4y mũ 2 - 4y
3, 3x mũ 2 - 4y + 4x - 3y mũ 2
4, x mũ 4 - 6x mũ 3 + 54x - 81
bài 2; phân tích các đa thức sau thành nhân tử
1, x mũ 2 - y mũ 2+ 4x 4
2, x mũ 2 + 2x - 4y mũ 2 - 4y
3, 3x mũ 2 - 4y + 4x - 3y mũ 2
4, x mũ 4 - 6x mũ 3 + 54x - 81
\(1,x^2-y^2+4x-4y\)
\(\left(x-y\right)\left(x+y\right)+4\left(x-y\right)\)
\(\left(x-y\right)\left(x+y+4\right)\)
\(x^2+2x-4y^2-4y\)
\(\left(x-2y\right)\left(x+2y\right)+2\left(x-2y\right)\)
\(\left(x-2y\right)\left(x+2y+2\right)\)
\(3,3x^2-4y+4x-3y^2\)
\(3\left(x^2-y^2\right)-4\left(x-y\right)\)
\(3\left(x-y\right)\left(x+y\right)-4\left(x-y\right)\)
\(\left(x-y\right)\left(3x+3y-4\right)\)
\(x^4-6x^3+54x-81\)
\(x^4+3x^3-9x^3+27x^2-27x^2+81x-27x-81\)
\(\left(x^4+3x^3\right)-\left(9x^3+27x^2\right)+\left(27x^2+81x\right)-\left(27x+81\right)\)
\(x^3\left(x+3\right)-9x^2\left(x+3\right)+27x\left(x+3\right)-27\left(x+3\right)\)
\(\left(x+3\right)\left(x^3-9x^2+27x-27\right)\)
\(\left(x+3\right)\left(x-3\right)^3\)
bài 48; phân tích các đa thức sau thành nhân tử
5, x mũ 2 - y mũ 2 + 4x + 4
6, x mũ 2 + 2x - 4y mũ 2 - 4y
7, 3x mũ 2 - 4y + 4x - 3y mũ 2
8, x mũ 4 - 6x mũ 3 + 54x - 81
Trả lời:
5, x2 - y2 + 4x + 4
= ( x2 + 4x + 4 ) - y2
= ( x + 2 )2 - y2
= ( x + 2 - y ) ( x + 2 + y )
6, x2 + 2x - 4y2 - 4y
= ( x2 - 4y2 ) + ( 2x - 4y )
= ( x - 2y ) ( x + 2y ) + 2 ( x - 2y )
= ( x - 2y ) ( x + 2y + 2 )
7, 3x2 - 4y + 4x - 3y2
= ( 3x2 - 3y2 ) + ( 4x - 4y )
= 3 ( x2 - y2 ) + 4 ( x - y )
= 3 ( x - y ) ( x + y ) + 4 ( x - y )
= ( x - y ) [ 3 ( x + y ) + 4 ]
= ( x - y ) ( 3x + 3y + 4 )
8, x4 - 6x3 + 54x - 81
= ( x4 - 81 ) - ( 6x3 - 54x )
= ( x2 - 9 ) ( x2 + 9 ) - 6x ( x2 - 9 )
= ( x2 - 9 ) ( x2 + 9 - 6x )
= ( x - 3 ) ( x + 3 ) ( x - 3 )2
= ( x - 3 )3 ( x + 3 )
a, \(x^2-y^2+4x+4=\left(x+2\right)^2-y^2=\left(x+2-y\right)\left(x+2+y\right)\)
b, \(x^2+2x-4y^2-4y=\left(x-2y\right)\left(x+2y\right)+2\left(x-2y\right)=\left(x-2y\right)\left(x+2+2y\right)\)
c, \(3x^2-4y+4x-3y^2=3\left(x-y\right)\left(x+y\right)-4\left(y-x\right)=\left(x-y\right)\left(3x+3y+4\right)\)
d, \(x^4-6x^3+54x-81=\left(x^2+9\right)\left(x-3\right)\left(x+3\right)-6x\left(x^2-9\right)\)
\(=\left(x-3\right)\left(x+3\right)\left(x^2-6x+9\right)=\left(x-3\right)^3\left(x+3\right)\)
5, x2-y2+4x+4
=(x2+4x+4)-y2
=(x+2)2-y2
=(x+2-y)(x+2+y)
6, x2+2x-4y2-4y
=(x2-4y2)+(2x-4y)
=(x-2y)(x+2y)+2(x-2y)
=(x-2y)(x+2y+2)
7, 3x2-4y+4x-3y2
=(3x2-3y2)+(4x-4y)
=3(x2-y2)+4(x-y)
=3(x-y)(x+y)+4(x-y)
=(x-y)[3(x+y)+4]
=(x-y)(3x+3y+4)
8, x4-6x3+54x-81
=(x4-81)-(6x3-54x)
=(x2-9)(x2+9)-6x(x2-9)
=(x2-9)(x2+9-6x)
=(x+3)(x-3)(x-3)2
=(x+3)(x-3)3
#H
Đề bài: Tìm x,y,z biết:
1. | x + 1 | + y mũ 2 + 4y + 4 = 0
2. 4x mũ 2 + 9y mũ 2 + 2 ( 2x - 3y + 1 ) = 0
3. 2x ( x - 1 - y ) + y mũ 2 + 1 = 0
4.x mũ 2 + 5y mũ 2 + 4 ( 1 + y - xy ) = 0
5. | 2x - 1 | + y mũ 2 - y + 1/4 = 0
6. x mũ 2 + y mũ 2 + 4x + 6y + 13 = 0
Các bn giúp mk nhé, mk sẽ tick cho các bn!!!!!!!!!!!!11
1. | x + 1| + (y + 2)2 = 0
Mà (y + 2)2 \(\ge\) 0
Đẳng thức khi . y + 2 \(\ge\) 0
y \(\ge\) - 2
. x + 1 = 0
. x = -1
11x+11y-x mũ 2 -xy
11x + 11y - x2 - xy
= 11x - x2 + 11y - xy
= x(11 - x) + y(11 - x)
= (x + y)(11 - x)