Những câu hỏi liên quan
DT
Xem chi tiết
NT
10 tháng 12 2023 lúc 8:30

a: Xét tứ giác ABQN có

\(\widehat{BQN}=\widehat{QNA}=\widehat{NAB}=90^0\)

=>ABQN là hình chữ nhật

b: Xét ΔCAD có

DN,CH là các đường cao

DN cắt CH tại M

Do đó: M là trực tâm của ΔCAD

=>AM\(\perp\)CD

c: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{ABC}\right)\)

Do đó: ΔHAB đồng dạng với ΔHCA

=>\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)

=>\(HA^2=HB\cdot HC\)

=>\(HA=\sqrt{HB\cdot HC}\)

 

Bình luận (3)
DT
10 tháng 12 2023 lúc 6:03

loading...  

Bình luận (1)
AV
Xem chi tiết
NT
25 tháng 8 2021 lúc 21:23

Bài 2: 

Ta có: \(3n^3+10n^2-5⋮3n+1\)

\(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow3n\in\left\{0;-3;3\right\}\)

hay \(n\in\left\{0;-1;1\right\}\)

Bình luận (0)
LA
Xem chi tiết
NT
31 tháng 7 2021 lúc 22:20

b) Để P nguyên thì \(\sqrt{x}+5⋮3\sqrt{x}-1\)

\(\Leftrightarrow3\sqrt{x}+15⋮3\sqrt{x}-1\)

\(\Leftrightarrow16⋮3\sqrt{x}-1\)

\(\Leftrightarrow3\sqrt{x}-1\in\left\{-1;1;2;4;8;16\right\}\)

\(\Leftrightarrow3\sqrt{x}\in\left\{0;2;3;5;9;17\right\}\)

\(\Leftrightarrow3\sqrt{x}\in\left\{0;3;9\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{0;1;3\right\}\)
hay \(x\in\left\{0;1;9\right\}\)

Bình luận (0)
MA
Xem chi tiết
TM
6 tháng 4 2023 lúc 21:57

Bài III.2b.

Phương trình hoành độ giao điểm của \(\left(P\right)\) và \(\left(d\right)\) : \(x^2=\left(m+1\right)x-m-4\)

hay : \(x^2-\left(m+1\right)x+m+4=0\left(I\right)\)

\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm nên phương trình \(\left(I\right)\) sẽ có hai nghiệm phân biệt. Do đó, phương trình \(\left(I\right)\) phải có : 

\(\Delta=b^2-4ac=\left[-\left(m+1\right)\right]^2-4.1.\left(m+4\right)\)

\(=m^2+2m+1-4m-16\)

\(=m^2-2m-15>0\).

\(\Rightarrow m< -3\) hoặc \(m>5\).

Theo đề bài : \(\sqrt{x_1}+\sqrt{x_2}=2\sqrt{3}\)

\(\Rightarrow\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=\left(2\sqrt{3}\right)^2=12\)

\(\Leftrightarrow x_1+x_2+2\sqrt{x_1x_2}=12\left(II\right)\)

Do phương trình \(\left(I\right)\) có hai nghiệm khi \(m< -3\) hoặc \(m>5\) nên theo định lí Vi-ét, ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\dfrac{-\left(m+1\right)}{1}=m+1\\x_1x_2=\dfrac{c}{a}=\dfrac{m+4}{1}=m+4\end{matrix}\right.\).

Thay vào \(\left(II\right)\) ta được : \(m+1+2\sqrt{m+4}=12\)

Đặt \(t=\sqrt{m+4}\left(t\ge0\right)\), viết lại phương trình trên thành : \(t^2-3+2t=12\)

\(\Leftrightarrow t^2+2t-15=0\left(III\right)\).

Phương trình \(\left(III\right)\) có : \(\Delta'=b'^2-ac=1^2-1.\left(-15\right)=16>0\).

Suy ra, \(\left(III\right)\) có hai nghiệm phân biệt : 

\(\left\{{}\begin{matrix}t_1=\dfrac{-b'+\sqrt{\Delta'}}{a}=\dfrac{-1+\sqrt{16}}{1}=3\left(t/m\right)\\t_2=\dfrac{-b'-\sqrt{\Delta'}}{a}=\dfrac{-1-\sqrt{16}}{1}=-5\left(ktm\right)\end{matrix}\right.\)

Suy ra được : \(\sqrt{m+4}=3\Rightarrow m=5\left(ktm\right)\).

Vậy : Không có giá trị m thỏa mãn đề bài.

Bình luận (0)
TM
6 tháng 4 2023 lúc 22:16

Bài IV.b.

Chứng minh : Ta có : \(OB=OC=R\) nên \(O\) nằm trên đường trung trực \(d\) của \(BC\).

Theo tính chất hai tiếp tuyến cắt nhau thì \(IB=IC\), suy ra \(I\in d\).

Suy ra được \(OI\) là một phần của đường trung trực \(d\) của \(BC\) \(\Rightarrow OI\perp BC\) tại \(M\) và \(MB=MC\).

Xét \(\Delta OBI\) vuông tại \(B\) có : \(MB^2=OM.OI\).

Lại có : \(BC=MB+MC=2MB\)

\(\Rightarrow BC^2=4MB^2=4OM.OI\left(đpcm\right).\)

Tính diện tích hình quạt tròn

Ta có : \(\hat{BAC}=\dfrac{1}{2}sđ\stackrel\frown{BC}\Rightarrow sđ\stackrel\frown{BC}=2.\hat{BAC}=2.70^o=140^o\) (góc nội tiếp).

\(\Rightarrow S=\dfrac{\pi R^2n}{360}=\dfrac{\pi R^2.140^o}{360}=\dfrac{7}{18}\pi R^2\left(đvdt\right)\)

 

Bình luận (0)
PT
Xem chi tiết
AH
14 tháng 7 2023 lúc 13:40

Đề thiếu. Bạn coi lại đề.

Bình luận (1)
PN
Xem chi tiết
NL
Xem chi tiết
NN
28 tháng 1 2023 lúc 21:48

Bình luận (1)
NT
28 tháng 1 2023 lúc 21:42

a: Khi x=3 thì \(A=\dfrac{3\cdot3}{3-2}=9\)

b: C=A+B

\(=\dfrac{3x}{x-2}-\dfrac{6}{x-2}-\dfrac{x^2+4x+4}{x^2-4}\)

\(=\dfrac{3x-6}{x-2}-\dfrac{x+2}{x-2}\)

\(=\dfrac{3x-6-x-2}{x-2}=\dfrac{2x-8}{x-2}\)

c: Để C nguyên thì 2x-4-4 chia hết cho x-2

=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(x\in\left\{3;1;4;0;6\right\}\)

Bình luận (1)
HC
Xem chi tiết
TT
1 tháng 6 2021 lúc 17:50

\(A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{49.51}\)

\(A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\)

\(A=1-\dfrac{1}{51}=\dfrac{50}{51}\)

Câu B làm tương tự câu A

Bình luận (0)
H24
1 tháng 6 2021 lúc 17:35

bai BA la bai nao

Bình luận (3)
TT
1 tháng 6 2021 lúc 17:59

b) \(B=\dfrac{3}{1.5}+\dfrac{3}{5.9}+\dfrac{3}{9.13}+\dfrac{3}{13+17}+\dfrac{3}{17+21}+\dfrac{3}{21.25}+\dfrac{3}{25.29}\)\(B=3.\left(\dfrac{1}{1.5}+\dfrac{1}{5.9}+\dfrac{1}{9.13}+\dfrac{1}{13+17}+\dfrac{1}{17+21}+\dfrac{1}{21.25}+\dfrac{1}{25.29}\right).4:4\)

\(B=\dfrac{3}{4}.\left(\dfrac{4}{1.5}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+\dfrac{4}{13+17}+\dfrac{4}{17+21}+\dfrac{4}{21.25}+\dfrac{4}{25.29}\right)\)

\(B=\dfrac{3}{4}.\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+....+\dfrac{1}{25}-\dfrac{1}{29}\right)\)

\(B=\dfrac{3}{4}.\left(1-\dfrac{1}{29}\right)\)

\(B=\dfrac{3}{4}.\dfrac{28}{29}=\dfrac{21}{29}\)

Bình luận (0)