\(\dfrac{2}{3}-\left|\dfrac{3}{4}\right|+\sqrt{\dfrac{25}{9}}-\left(\dfrac{2021}{2022}\right)^0\)
Câu 1: Thực hiện phép tính
a, \(40\dfrac{1}{4}:\dfrac{5}{7}-25\dfrac{1}{4}:\dfrac{5}{7}-\dfrac{1}{2021}\)
b, \(\left|\dfrac{-5}{9}\right|.\sqrt{81}-2021^0.\dfrac{16}{25}\)
Câu 2: Tìm x
\(3\left(x-\dfrac{1}{3}\right)-7\left(x+\dfrac{3}{7}\right)=-2x+\dfrac{1}{3}\)
1:
a: =7/5(40+1/4-25-1/4)-1/2021
=21-1/2021=42440/2021
b: =5/9*9-1*16/25=5-16/25=109/25
Thực hiện phép tính:
a) 2021 - \(\left(\dfrac{1}{3}\right)^2\) . 32
b \(\dfrac{5}{10}\) + 9 . \(\dfrac{-3}{2}\)
c) -10 . \(\left(-\dfrac{2021}{2022}\right)^0\) + \(\left(\dfrac{2}{5}\right)^2\) : 2
a) 2021 - (1/3)² . 3²
= 2021 - 1/9 . 9
= 2021 - 1
= 2020
b) 5/10 + 9 . (-3/2)
= 1/2 - 27/2
= -26/2
= -13
c) -10 . (-2021/2022)⁰ + (2/5)² : 2
= -10 . 1 + 4/25 . 2
= -10 + 8/25
= -68/7
\(a,2021-\left(\dfrac{1}{3}\right)^2\cdot3^2\\ =2021-\dfrac{1}{9}\cdot9\\ =2021-\dfrac{9}{9}\\ =2021-1=2020\\ b,\dfrac{5}{10}+9\cdot\dfrac{-3}{2}\\ =\dfrac{5}{10}+\dfrac{-27}{2}\\ =\dfrac{5}{10}+\dfrac{-135}{10}\\ =-\dfrac{130}{10}\\ =-13\\ c,-10\cdot\left(-\dfrac{2021}{2022}\right)^0+\left(\dfrac{2}{5}\right)^2:2\\ =-10\cdot1+\dfrac{4}{25}\cdot\dfrac{1}{2}\\ =-10+\dfrac{4}{50}\\ =-10+\dfrac{2}{25}\\ =-\dfrac{248}{25}\)
a)\(\left(\dfrac{5}{9}-\dfrac{\sqrt{9}}{12}\right):\dfrac{3}{4}+\dfrac{11}{3}:\dfrac{3}{4}\) b)\(\left(0,\left(3\right)+\dfrac{\text{|}-2\text{|}}{3}\right):\dfrac{\sqrt{25}}{4}-\left(2^3+3^2\right)^0\)
a: \(\left(\dfrac{5}{9}-\dfrac{\sqrt{9}}{12}\right):\dfrac{3}{4}+\dfrac{11}{3}:\dfrac{3}{4}\)
\(=\left(\dfrac{5}{9}-\dfrac{3}{12}\right)\cdot\dfrac{4}{3}+\dfrac{11}{3}\cdot\dfrac{4}{3}\)
\(=\left(\dfrac{5}{9}-\dfrac{1}{4}+\dfrac{11}{3}\right)\cdot\dfrac{4}{3}\)
\(=\dfrac{20-9+132}{36}\cdot\dfrac{4}{3}\)
\(=\dfrac{143}{3}\cdot\dfrac{1}{9}=\dfrac{143}{27}\)
b: \(\left(0.\left(3\right)+\dfrac{\left|-2\right|}{3}\right):\dfrac{\sqrt{25}}{4}-\left(2^3+3^2\right)^0\)
\(=\left(\dfrac{1}{3}+\dfrac{2}{3}\right)\cdot\dfrac{4}{5}-1\)
\(=\dfrac{4}{5}-1=-\dfrac{1}{5}\)
a, \(\left(2x-1\right)\left(x+\dfrac{2}{3}\right)=0\)
b, \(\dfrac{x+4}{2019}+\dfrac{x+3}{2020}=\dfrac{x+2}{2021}+\dfrac{x+1}{2022}\)
a)
`(2x-1)(x+2/3)=0`
\(< =>\left[{}\begin{matrix}2x-1=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
b)
\(\dfrac{x+4}{2019}+\dfrac{x+3}{2020}=\dfrac{x+2}{2021}+\dfrac{x+1}{2022}\)
\(< =>\dfrac{x+4}{2019}+1+\dfrac{x+3}{2020}+1=\dfrac{x+2}{2021}+1+\dfrac{x+1}{2022}+1\)
\(< =>\dfrac{x+2023}{2019}+\dfrac{x+2023}{2020}=\dfrac{x+2023}{2021}+\dfrac{x+2023}{2022}\)
\(< =>\left(x+2023\right)\left(\dfrac{1}{2019}+\dfrac{1}{2020}-\dfrac{1}{2021}-\dfrac{1}{2022}\right)=0\)
\(< =>x+2023=0\left(\dfrac{1}{2019}+\dfrac{1}{2020}-\dfrac{1}{2021}-\dfrac{1}{2022}\ne0\right)\\ < =>x=-2023\)
sai rồi , x không thể có 2 giá trị
a) + Chia thành 2 trường hợp
- 2x - 1 = 0
2x = 0 + 1
2x = 1
x = 1 : 2
x = 0,5
- x + 2/3 = 0
x = 0 - 2/3
x = -2/3
vậy x = { 0,5 ; -2/3 }
Cho 2022 số tự nhiên a(1), a(2), a(3), ..., a(2021), a(2022) khác 0 thỏa mãn:
\(\dfrac{1}{a\left(1\right)}\) + \(\dfrac{1}{a\left(2\right)}\) + ... + \(\dfrac{1}{a\left(2021\right)}\) + \(\dfrac{1}{a\left(2022\right)}\) = 1. Chứng minh rằng: tồn tại ít nhất một số trong 2022 số đã cho là số chẵn.
Thực hiện phép tính (tính nhanh nếu có thể):
4) \(4\cdot\left(\dfrac{-1}{2}\right)^3+\left|-1\dfrac{1}{2}+\sqrt{\dfrac{9}{4}}\right|:\sqrt{25}\)
5) \(\left[6-3\cdot\left(\dfrac{-1}{3}\right)^2+\sqrt{\dfrac{1}{4}}\right]:\sqrt{0,\left(9\right)}\)
thực hiện phép tính (tính hợp lí nếu có thể)
1) \(\left(-\dfrac{1}{2}\right)^2:\dfrac{1}{4}-2.\left(\dfrac{-1}{2}\right)^3+\sqrt{4}\)
2) \(3-\left(\dfrac{-6}{7}\right)^0+\sqrt{9}:2\)
3) \(\left(-2\right)^3+\dfrac{1}{2}:\dfrac{1}{8}-\sqrt{25}+\left|-64\right|\)
4) \(\left(-\dfrac{1}{2}\right)^4+\left|-\dfrac{2}{3}\right|-2007^0\)
5) \(\dfrac{\left(0,4-\dfrac{2}{9}+\dfrac{2}{11}\right)}{1,4-\dfrac{7}{9}+\dfrac{7}{11}}-\dfrac{\dfrac{1}{3}-0,25+\dfrac{1}{5}}{1\dfrac{1}{6}-0,875+0,7}\)
6) \(\left[2^3.\left(-\dfrac{1}{2}\right)^3+\dfrac{1}{2}\right]+\left[\dfrac{25}{22}+\dfrac{6}{25}-\dfrac{3}{22}+\dfrac{19}{25}+\dfrac{1}{2}\right]\)
1)(-1/2)^2:1/4-2.(-1/2)^3+căn 4
=1/4:1/4-2.-1/8+2
= 1-(-1/4)+2
=1+1/4+2=13/4
2) 3-(-6/7)^0+căn 9 :2
= 3-1+3:2
=3-1+3/2=7/2
3) (-2)^3+1/2:1/8-căn 25 + |-64|
= -8+4-5+64= 55
4) (-1/2)^4+|-2/3|-2007^0
= 1/16+2/3-1
= -13/48
5) = 178/495:623/495-17/60:119/120
= 2/7-2/7=0
6) [2^3.(-1/2)^3+1/2]+[25/22+6/25-3/22+19/25+1/2]
= [-1+1/2]+[(25/22-3/22)+(6/25+19/25)+1/2]
= -1/2+[1+1+1/2]
= -1/2+5/2=2
Mấy cái dấu chấm đó là nhân nha bn!
Tính giá trị của biểu thức:
\(A=\dfrac{-3}{7}.\dfrac{5}{9}+\dfrac{4}{9}.\dfrac{-3}{7}+\left(-2022\right)^0\)
\(B=0,75-\left(2\dfrac{1}{3}+0,75\right)+3^2.\left(-\dfrac{1}{9}\right)\)
\(C=2\dfrac{6}{7}.\left[\left(\dfrac{-7}{5}-\dfrac{3}{2}:\dfrac{-5}{-4}\right)+\left(\dfrac{3}{2}\right)^2\right]\)
\(D=\dfrac{2}{7}+\dfrac{5}{7}.\left(\dfrac{3}{5}-0,25\right).\left(-2\right)^2+35\%\)
\(E=1\dfrac{13}{15}.0,75-\left(\dfrac{11}{20}+25\%\right):1\dfrac{2}{5}\)
\(F=\dfrac{\dfrac{5}{3}-\dfrac{5}{7}+\dfrac{5}{9}}{\dfrac{10}{3}-\dfrac{10}{7}+\dfrac{10}{9}}\)
Tính:
\(\left(\dfrac{9}{25}-2.18\right):\left(3\dfrac{4}{5}+0,2\right)\)
\(\dfrac{3}{8}.19\dfrac{1}{3}\dfrac{3}{8}.33\dfrac{1}{3}\)
\(15.\left(-\dfrac{2}{3}\right)^2-\dfrac{7}{3}\)
\(\dfrac{1}{2}\sqrt{64}-\sqrt{\dfrac{4}{25}}+\left(-1\right)^{2007}\)
\(\left(-\dfrac{5}{2}\right)^2:\left(-15\right)-\left(0,45+\dfrac{3}{4}\right).\left(-1\dfrac{5}{9}\right)\)
\(\left(\dfrac{-1}{3}\right)-\left(\dfrac{-3}{5}\right)^0+\left(1-\dfrac{1}{2}\right)^2:2\)
\(\left(\dfrac{1}{2}\right)^{15}.\left(\dfrac{1}{4}\right)^{20}\)
\(\dfrac{5^4.20}{25^5.4^5}\)
a) Ta có: \(\left(\dfrac{9}{25}-2\cdot18\right):\left(3\dfrac{4}{5}+0.2\right)\)
\(=\left(\dfrac{9}{25}-36\right):\left(\dfrac{19}{5}+\dfrac{1}{5}\right)\)
\(=\left(\dfrac{9}{25}-\dfrac{900}{25}\right):\dfrac{20}{5}\)
\(=\dfrac{-891}{25}\cdot\dfrac{1}{4}\)
\(=-\dfrac{891}{100}\)
b) Ta có: \(\dfrac{3}{8}\cdot19\dfrac{1}{3}+\dfrac{3}{8}\cdot33\dfrac{1}{3}\)
\(=\dfrac{3}{8}\cdot\dfrac{58}{3}+\dfrac{3}{8}\cdot\dfrac{100}{3}\)
\(=\dfrac{58}{8}+\dfrac{100}{8}\)
\(=\dfrac{158}{8}=\dfrac{79}{4}\)
c) Ta có: \(15\cdot\left(-\dfrac{2}{3}\right)^2-\dfrac{7}{3}\)
\(=15\cdot\dfrac{4}{9}-\dfrac{7}{3}\)
\(=\dfrac{20}{3}-\dfrac{7}{3}\)
\(=\dfrac{13}{3}\)
d) Ta có: \(\dfrac{1}{2}\sqrt{64}-\sqrt{\dfrac{4}{25}}+\left(-1\right)^{2007}\)
\(=\dfrac{1}{2}\cdot8-\dfrac{2}{5}-1\)
\(=4-1-\dfrac{2}{5}\)
\(=3-\dfrac{2}{5}\)
\(=\dfrac{15}{5}-\dfrac{2}{5}=\dfrac{13}{5}\)
e) Ta có: \(\left(-\dfrac{5}{2}\right)^2:\left(-15\right)-\left(0.45+\dfrac{3}{4}\right)\cdot\left(-1\dfrac{5}{9}\right)\)
\(=\dfrac{25}{4}\cdot\dfrac{-1}{15}-\left(\dfrac{9}{20}+\dfrac{15}{20}\right)\cdot\dfrac{-14}{9}\)
\(=\dfrac{-25}{60}-\dfrac{24}{20}\cdot\dfrac{-14}{9}\)
\(=\dfrac{-25}{60}+\dfrac{28}{15}\)
\(=\dfrac{-25}{60}+\dfrac{112}{60}\)
\(=\dfrac{87}{60}=\dfrac{29}{20}\)
f) Ta có: \(\left(-\dfrac{1}{3}\right)-\left(-\dfrac{3}{5}\right)^0+\left(1-\dfrac{1}{2}\right)^2:2\)
\(=-\dfrac{1}{3}-1+\left(\dfrac{1}{2}\right)^2\cdot\dfrac{1}{2}\)
\(=\dfrac{-4}{3}+\dfrac{1}{4}\cdot\dfrac{1}{2}\)
\(=\dfrac{-4}{3}+\dfrac{1}{8}\)
\(=\dfrac{-32}{24}+\dfrac{3}{24}=\dfrac{-29}{24}\)
g) Ta có: \(\left(\dfrac{1}{2}\right)^{15}\cdot\left(\dfrac{1}{4}\right)^{20}\)
\(=\left(\dfrac{1}{2}\right)^{15}\cdot\left(\dfrac{1}{2}\right)^{40}\)
\(=\left(\dfrac{1}{2}\right)^{55}\)
\(=\dfrac{1}{2^{55}}\)
h) Ta có: \(\dfrac{5^4\cdot20}{25^5\cdot4^5}\)
\(=\dfrac{5^4\cdot5\cdot2^2}{5^{10}\cdot2^{10}}\)
\(=\dfrac{5^5}{5^{10}}\cdot\dfrac{2^2}{2^{10}}\)
\(=\dfrac{1}{5^5}\cdot\dfrac{1}{2^8}\)
\(=\dfrac{1}{800000}\)