Những câu hỏi liên quan
NT
Xem chi tiết
ND
Xem chi tiết
NP
Xem chi tiết
H24
19 tháng 2 2018 lúc 12:07

Do z > 0 nên từ xy 2 z 2 + x 2 z + y = 3z 2 ⇒ xy 2 +\(\frac{x^2}{z}+\frac{y}{z^2}=3\)

Áp dụng AM­GM ta có:

(x 2y 2 + y 2 ) + (x 2 +\(\frac{x^2}{z^2}\))+(\(\frac{y^2}{z^2}+\frac{1}{z^2}\)) ≥ 2(xy 2 +\(\frac{x^2}{z}+\frac{y}{z^2}\))=6

...............

Bình luận (0)
H24
Xem chi tiết
NL
21 tháng 1 2021 lúc 18:46

1.

Gọi \(d=ƯC\left(2n^2+3n+1;3n+1\right)\)

\(\Rightarrow2n^2+3n+1-\left(3n+1\right)⋮d\)

\(\Rightarrow2n^2⋮d\Rightarrow2n\left(3n+1\right)-3.2n^2⋮d\)

\(\Rightarrow2n⋮d\Rightarrow2\left(3n+1\right)-3.2n⋮d\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)

\(d=2\Rightarrow3n+1=2k\Rightarrow n=2m+1\)

\(\Rightarrow n\) lẻ thì A không tối giản

\(\Rightarrow n\) chẵn thì A tối giản

Bình luận (0)
NL
21 tháng 1 2021 lúc 18:55

2.

Giả thiết tương đương:

\(xy^2+\dfrac{x^2}{z}+\dfrac{y}{z^2}=3\)

Đặt \(\left(x;y;\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow a^2c+b^2a+c^2b=3\)

Ta có: \(9=\left(a^2c+b^2a+c^2b\right)^2\le\left(a^4+b^4+c^4\right)\left(c^2+a^2+b^2\right)\)

\(\Rightarrow9\le\left(a^4+b^4+c^4\right)\sqrt{3\left(a^4+b^4+c^4\right)}\)

\(\Rightarrow3\left(a^4+b^4+c^4\right)^3\ge81\Rightarrow a^4+b^4+c^4\ge3\)

\(\Rightarrow M=\dfrac{1}{a^4+b^4+c^4}\le\dfrac{1}{3}\)

\(M_{max}=\dfrac{1}{3}\) khi \(\left(a;b;c\right)=\left(1;1;1\right)\) hay \(\left(x;y;z\right)=\left(1;1;1\right)\)

Bình luận (0)
H24
Xem chi tiết
BC
24 tháng 1 2017 lúc 7:14

???lolangnhonhung

Bình luận (0)
TK
29 tháng 1 2017 lúc 17:04

P.An hở

Bình luận (0)
TT
2 tháng 2 2017 lúc 15:39

Hay :) :) :)

Bình luận (0)
H24
Xem chi tiết
H24
30 tháng 8 2018 lúc 17:39

ai giúp mik vs huhu

Bình luận (0)
VM
Xem chi tiết
NL
Xem chi tiết
PN
30 tháng 8 2020 lúc 8:28

Gỉa thiết tương đương với \(xy^2+\frac{x^2}{z}+\frac{y}{z^2}=3\)

Đặt \(a=x;b=y;c=\frac{1}{z}\)khi đó bài toán quy về 

\(ab^2+a^2c+c^2b=3\)Tìm GTLN của \(P=\frac{1}{a^4+b^4+c^4}\)

Sử dụng BĐT AM-GM ta có :

\(a^4+b^4+b^4+1\ge4\sqrt[4]{a^4b^4b^4}=4ab^2\)

Bằng cách chứng minh tương tự ta được :

\(b^4+c^4+c^4+1\ge4bc^2\)\(c^4+a^4+a^4+1\ge4ca^2\)

Cộng theo vế các bđt cùng chiều ta được :

\(3\left(a^4+b^4+c^4\right)+3\ge4\left(ab^2+bc^2+ca^2\right)=4.3=12\)

\(< =>a^4+b^4+c^4+1\ge\frac{12}{3}=4\)

\(< =>a^4+b^4+c^4\ge4-1=3\)

Vậy \(P\le\frac{1}{3}\)Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1< =>x=y=z=1\)

Bình luận (0)
 Khách vãng lai đã xóa
NP
Xem chi tiết