tìm \(n\in N\) để
A= \(\left(n^2-3\right)^2\)+16 là số nguyên tố
Tìm n ϵ Z để
A= (n+5)2 - (n-6)2 có giá trị là một số nguyên tố
\(A=\left(n+5\right)^2-\left(n-6\right)^2\)
\(=\left(n+5-n+6\right)\left(n+5+n-6\right)\)
\(=11\left(2n-1\right)\)
Để \(A\) là số nguyên tố thì \(11\left(2n-1\right)\) là số nguyên tố
mà 11 là số nguyên tố \(\Rightarrow2n-1=1\Rightarrow n=1\left(tm\right)\)
#\(Urushi\)
1.Tìm 3 số nguyên tố a; b; c sao cho
a2+5ab+b2=7
2.Tìm n∈N để
A=n2012+n2002+1 là số nguyên tố
3.Tìm n∈N* để n4+n3+1 là 1 SCP
\(2,\\ n=0\Leftrightarrow A=1\left(loại\right)\\ n=1\Leftrightarrow A=3\left(nhận\right)\\ n>1\Leftrightarrow A=n^{2012}-n^2+n^{2002}-n+n^2+n+1\\ \Leftrightarrow A=n^2\left[\left(n^3\right)^{670}-1\right]+n\left[\left(n^3\right)^{667}-1\right]+\left(n^2+n+1\right)\)
Ta có \(\left(n^3\right)^{670}-1⋮\left(n^3-1\right)=\left(n-1\right)\left(n^2+n+1\right)⋮\left(n^2+n+1\right)\)
Tương tự \(\left(n^3\right)^{667}⋮\left(n^2+n+1\right)\)
\(\Leftrightarrow A⋮\left(n^2+n+1\right);A>1\)
Vậy A là hợp số với \(n>1\)
Vậy \(n=1\)
\(3,\)
Đặt \(A=n^4+n^3+1\)
\(n=1\Leftrightarrow A=3\left(loại\right)\\ n\ge2\Leftrightarrow\left(2n^2+n-1\right)^2\le4A\le\left(2n^2+n\right)^2\\ \Leftrightarrow4A=\left(2n^2+n\right)^2\\ \Leftrightarrow4n^2+4n^3+4=4n^2+4n^3+n^2\\ \Leftrightarrow n^2=4\Leftrightarrow n=2\)
Vậy \(n=2\)
tìm số nguyên n để (n-2)n(n+2) là số nguyên tố
tồn tại hay không \(n\in Z;;p\in P\)thỏa mãn phương trình:
\(\left(n-2\right)n\left(n+2\right)=p\)
Tìm \(n\in N\)sao cho : \(\left(n-2\right)\left(n^2+n-1\right)\)là số nguyên tố !
Để (n-2)(n^2 + n - 1) là số nguyên tố => (n-2) hoặc n^2 + n - 1 phải = 1
Mà n^2 + n - 1 = n^2 + 1 +(n-2) > n+2
=> n + 2 = 1 => n = 3
Vì p là tích của hai số ( n - 2 )( n^2 + n - 1 )
=> p là số nguyên tố thì một trong hai số tren phải = 1 ( nếu cả hai tích số đều lớn hơn 1 => p là hợp số , trái vs đầu bài )
ta luôn có : n^2 + n - 1 = n^2 + 1 + ( n- 2 ) > ( n - 2 )
vậy => n - 2 = 1 => n = 3 => p = 11
Chúc bạn hương học giỏi nha <3 <3 <3
nguyên tử của nguyên tố a có tổng số hạt là 48 trong đó số hạt
Nguyên tử của một nguyên tố A có tổng số hạt là 48
\(2p+n=48\left(1\right)\)
Số hạt mang điện gấp 2 lần số hạt không mang điện
\(2p=2n\left(2\right)\)
\(\left(1\right),\left(2\right):p=e=n=16\)
1, CMR nếu a, b, c là các số tự nhiên đôi một nguyên tố cùng nhau thì \(\left(ab+bc+ca,abc\right)=1\)
2, CMR \(\forall n\in N\)* thì \(\dfrac{\left(17+12\sqrt{2}\right)^n-\left(17-12\sqrt{2}\right)^n}{4\sqrt{2}}\)
3, Tìm x,y∈Z:\(x^3-y^3=13\left(x^2+y^2\right)\)
Tìm số nguyên tố a sao cho \(\left(\frac{1}{b}\right)^2=\frac{9}{-9+225a}+\frac{\left(1+2+3+...+n\right)^2-\left(1^3+2^3+3^3+...+n^3\right)}{2500}\)và b cũng là số nguyên tố.
Bài 1 : Tìm số nguyên tố biết rằng số đó bằng tổng của 2 số nguyên tố và cũng bằng hiệu của 2 số nguyên tố khác
Bài 2: Tìm số tự nhiên n sao cho \(p=\left(n-2\right)\left(n^2+n-5\right)\)là số nguyên tố
Giup mk nhanh nha các bạn!
Câu hỏi của Davids Villa - Toán lớp 6 - Học toán với OnlineMath
Xem bài 1 tai jđây nhé ! mk ngại viết
Bài 1:
Gọi p là số nguyên tố cần tìm và \(p=a+b=c-d\)với \(a,b,c,d\)là các số nguyên tố ,\(c>d\)
Vì \(p=a+b>2\)nên p là số lẻ
\(\Rightarrow a+b\)và \(c-d\)là các số lẻ
Vì \(a+b\)là số lẻ nên một trong hai số \(a,b\)là số chẵn ,giả sử b chẵn .Vì b là số nguyên tố nên \(b=2\)
Vì \(c-d\)là số lẻ nên một trong hai số \(c,d\)là số chẵn .Vì \(c,d\)là các số nguyên tố \(c>d\)nên d là số chẵn \(\Rightarrow d=2\)
Do vậy :\(p=a+2=c-2\Rightarrow c=a+4\)
Ta cần tìm số nguyên tố a để \(p=a+2\)và \(c=a+4\)cũng là số nguyên tố
Vậy số nguyên tố cần tìm là 5: với \(5=3+2=7-2\)
Bài 2 :
Từ \(p=\left(n-2\right)\left(n^2+n-5\right)\)suy ra \(n-2\) và \(n^2+n-5\)là ước của p
Vì p là số nguyên tố nên hoặc \(n-2=1\)hoặc \(n^2+n-5=1\)
Nếu \(n-2=1\)thì \(n=3\)
Khi đó \(p=1.\left(3^2+3-5\right)=7\)là số nguyên tố (thảo mãn)
Nếu \(n^2+n-5=1\Leftrightarrow n^2+n=6\Leftrightarrow n\left(n+1\right)\)\(=2.3\Rightarrow n=2\)
Khi đó \(p=\left(2-2\right).1=0\)không là số nguyên tố
Vậy \(n=3\)
Chúc bạn học tốt ( -_- )
Tìm \(m\in N\)để
\(\left(m^2-3\right)^2+16\)là số nguyên tố
Các bạn giúp mình với nhé!!!! Thanks các bạn nhiều!!!!