\(A=\left(n^2-3\right)^2+16=n^4-6n^2+25=\left(n^4+10n^2+25\right)-16n^2=\left(n^2+5\right)^2-16n^2=\left(n^2-4n+5\right)\left(n^2+4n+5\right)\)Vì n là số tự nhiên nên \(n^2-4n+5\le n^2+4n+5\)suy ra để A là số nguyên tố thì \(n^2-4n+5=1\Leftrightarrow\left(n-2\right)^2=0\Leftrightarrow n=2\)
Thử n = 2 vào biểu thức A ta thấy thỏa mãn
Vậy n = 2 thì \(A=\left(n^2-3\right)^2+16\) là số nguyên tố