TL

tìm \(n\in N\) để

A= \(\left(n^2-3\right)^2\)+16 là số nguyên tố

KN
30 tháng 10 2020 lúc 12:33

\(A=\left(n^2-3\right)^2+16=n^4-6n^2+25=\left(n^4+10n^2+25\right)-16n^2=\left(n^2+5\right)^2-16n^2=\left(n^2-4n+5\right)\left(n^2+4n+5\right)\)Vì n là số tự nhiên nên \(n^2-4n+5\le n^2+4n+5\)suy ra để A là số nguyên tố thì \(n^2-4n+5=1\Leftrightarrow\left(n-2\right)^2=0\Leftrightarrow n=2\)

Thử n = 2 vào biểu thức A ta thấy thỏa mãn

Vậy n = 2 thì \(A=\left(n^2-3\right)^2+16\) là số nguyên tố 

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
NH
Xem chi tiết
MA
Xem chi tiết
VN
Xem chi tiết
KG
Xem chi tiết
NT
Xem chi tiết
TM
Xem chi tiết
TL
Xem chi tiết
NT
Xem chi tiết